Clinical Decision Making in Autoimmune Neuromuscular Disease:

Diagnosis, Treatment, and Management

Chairperson Carol Lee Koski, MD

Faculty

Marinos C. Dalakas, MD, FAAN Gil I. Wolfe, MD

Faculty

Chairperson Carol Lee Koski, MD

Professor of Neurology (Retired) University of Maryland School of Medicine Baltimore, Maryland

Faculty Marinos C. Dalakas, MD, FAAN

Professor of Neurology Imperial College London London, United Kingdom

Gil I. Wolfe, MD

Professor of Neurology University of Texas Southwestern Medical School Dallas, Texas

Topics of Today's Discussion

- Clinical and laboratory diagnostic features used to distinguish among a series of treatable autoimmune neuromuscular diseases, including GBS, CIDP, MMN, and MG
- The role of expert opinion, consensus statements, and evidence-based medicine in clinical decision making in autoimmune neuromuscular disease
- Current issues and clinical trial data relating to the long-term prognosis and management of autoimmune neuromuscular diseases

Objectives

On completion of this activity, participants should be able to:

- Recognize the clinical presentations of chronic inflammatory demyelinating polyneuropathy (CIDP), multifocal motor neuropathy (MMN), Guillain-Barré syndrome (GBS), and myasthenia gravis (MG)
- Evaluate the diagnostic evidence of CIDP, MMN, GBS, and MG
- Outline appropriate therapy based on disease course, therapeutic mechanisms, and safety and efficacy data
- Determine the appropriate timing, dosage, and duration of specific therapies used in the treatment of autoimmune muscular disease based on available evidence and expert opinion

Case 1—25-year-old Man With Flaccid Paralysis

- 25-year-old Caucasian man with a history of diarrheal illness 4–5 weeks ago who initially noted mild paresthesia in his feet
- Clinical course over the next 7 days was marked by:
 - <u>History</u>: Subacute onset of lower-extremity weakness > upper extremities
 - Physical exam:
 - Mild bilateral facial weakness, swallowing intact; symmetrical 1/5 strength in the IP and 0/5 in AT muscles; deltoid 3/5 and grip 1/5
 - Loss of deep tendon reflexes (DTRs)
 - Sensory exam within normal limits (WNL)
 - <u>Cerebral spinal fluid (CSF)</u>: protein 40 mg/dL, <6 monocytes

IP=Ileopsoas; AT=anterior tibial; CSF=cerebrospinal fluid

Case 1—Nerve Conduction Study Results

Nerve	Amplitude	Distal Latency	Duration	Conduction Velocity	F-wave Latency
Sural	15 µV	3.9 ms		55 m/s	
Peroneal Motor	NR				
Median Sensory	20 µV	3.0 ms		52 m/s	
Median Motor	5.0 mV 2.2	2.7 ms	8.5 ms 8.7	50 m/s	32 ms
Ulnar Motor	5.5 mV 4.2 3.2	4.2 ms	9.0 ms 10.0 10.2	48 m/s 45	28 ms

GBS—Immunotherapy: A Systematic Review

Therapy	Number of Trials	Number of Patients	Results
PE	5	585	Patients improved at 4 weeks vs placebo
IVIG	5	582	Results similar to PE
PE followed by IVIG	1	148	No additional benefit
IVIG in children	3 (open- label)	91	IVIG hastens improvement
Corticosteroids	6	587	Less improvement compared to no treatment

Adapted from: Hughes RA et al. Brain. 2007;130:2245-2257.

GBS—Why do some patients experience incomplete recovery after the standard dose of IVIG?

- IVIG clearance may play a role, or the dose may be suboptimal for certain patients
- Patients with small increase in serum IgG at 2 weeks had worse outcome; a second IVIG may be beneficial
- A controlled study (IVIG-SD) is in progress

Kuitwaard K et al. Ann Neurol. 2009;66:597-603.

GBS–IVIG vs Plasma Exchange vs Combination

- 383 patients
- 3-arm study
 - IVIG group (5 infusions of 0.4 g/kg)
 - Plasma exchange group (5 exchanges of 50 mL/kg)
 - Plasma exchange followed by IVIG group
- Benefit of IVIG=plasma exchange at 4 weeks
- Combination therapy no better than either treatment

GBS—Long-Term Prognosis

- 6- to 7-year long-term follow-up studies
- 20%–40% will continue to have some motor weakness
- An even greater percentage may still have sensory impairment

Vedeler CA et al. *Acta Neurol Scand* .1997;95:298-302. Dornonville de la Cour CD, Jakobsen J. *Neurology.* 2005;64:246-253. Koeppen S et al. *Neurocrit Care.* 2006;5:235-242.

GBS—Long-term Functional Status

- n=42 vs age and sex-matched control population from southwestern Norway
- Mean follow-up 6.4 yrs
- Scores worse for GBS group
 - Pain VAS (*p*<0.05)</p>
 - Disability rating index (p < 0.001)
 - SF-36: physical function and general health domains ($p \le 0.02$)
 - Fatigue severity scale (NS)
- No difference for shorter (<6 yrs) vs longer follow-up since onset
- Correlations
 - Higher age at GBS onset and disability rating
 - Higher Hughes disability at onset and fatigue severity
- Over time, the social and emotional distress seen in short-term studies recedes
 - Adaptation to deficits
 - Recalibration of expectations

Rudolph T et al. *Eur J Neurol* 2008;15:1332-1337.

Case 2—25-year-old Man With Tingling in His Feet

- Patient from Case 1
- Clinical course over the next 4 wks was marked by:
 - Progressive lower-extremity weakness and facial numbress
- Physical and laboratory findings included:
 - Bilateral facial weakness; symmetrical lower extremity weakness, loss of DTRs; decreased large fiber sensory loss
 - NCV: prolonged DL, F waves; temporal dispersion CMAP
 - CSF: 85mg % protein <10 monocytes
- Treated for AIDP; initial improvement in strength and less numbress, but weaker 1 month later
- Time course: chronic, progressive
- Diagnostic considerations: chronic neuropathy

Classic CIDP—Diagnostic Criteria

- No universally accepted diagnostic criteria^{1–5}
- No biomarker¹

- Response to immunomodulatory treatment

CSF=cerebrospinal fluid; MRI=magnetic resonance imaging.

1. Koski CL et al. *J Neurol Sci.* 2009;277:1-8. 2. Hughes RAC et al. *Eur J Neurol.* 2006;13:326-332. 3. Saperstein DS et al. *Muscle Nerve* 2001;24:311-324. 4. Saperstein DS, Barohn RJ. *Curr Neurol Neurosci Rep.* 2003;3:57-63. 5. Berger AR et al. *J Peripher Nerv Syst.* 2003;8:282-284.

CIDP—Electrodiagnostic Criteria

- Goal: criteria to distinguish primary demyelination in chronic neuropathies
- Many criteria: 60%–70% sensitive to primary demyelination

CIDP—Electrodiagnostic Criteria (cont)

- Practical concepts
 - Slower than expected for level of axonal loss:
 >25% (<75% of LLN; >125% of ULN)
 - Evidence of primary demyelination

Image courtesy of Mark B. Bromberg, MD, PhD.

CIDP Diagnosis— Proposed 2009 Criteria

- Patients with a chronic polyneuropathy, progressive for at least 8 weeks, would be classified as having CIDP if:
 - No serum paraprotein and
 - No documented genetic abnormality

AND EITHER

- At least 75% of motor nerves had recordable responses AND one of the following conditions is satisfied according to AAN criteria:
 - Abnormal distal latency in >50% of nerves or
 - Abnormal motor conduction velocity in >50% of nerves or
 - Abnormal F-wave latency in >50% of nerves

OR

- Symmetrical onset of motor symptoms
- Symmetrical weakness of 4 limbs and
- Proximal weakness in > or = 1 limb

Koski CL et al. J Neurol Sci. 2009;277:1-8.

CIDP—Evidence-Based Treatments

- IVIG: 2 g/kg as induction therapy
- Plasma exchange: 5–6 treatments
- Prednisone: 60–100 mg per day, followed by taper

Hughes RA et al. *Cochrane Database Syst Rev.* 2004;(4):CD003280. Mehndiratta MM et al. *Cochrane Database Syst Rev.* 2004;(3):CD003906. van Schaik IN et al. *Cochrane Database Syst Rev.* 2002;(2):CD001797.

The ICE Trial—Study Design

Adapted from: Hughes RA et al. Lancet Neurol. 2008;7:136-144.

The ICE Trial—Effect of IVIG on QoL Scores

Adapted from: Merkies IS et al. Neurology. 2009; 72:1337-1344.

Lower Probability of Relapse With Continued IVIG-C Maintenance Therapy

Hazard ratio=0.19; 95% CI=0.05-0.70

Cl=confidence interval.

Adapted from: Hughes et al. Lancet Neurol. 2008;7:136-144.

Acute CIDP—Need to Distinguish From Fluctuating GBS

- 16% of CIDP patients have rapidly progressive course, reaching nadir within 8 weeks
- 8%–16% of GBS patients have one or more deteriorations after initial treatment (treatmentrelated fluctuation [TRF])
- Treatment decisions differ: a patient with GBS-TRF requires repeat IVIG or plasmapheresis (PEx), whereas a patient with acute CIDP requires long-term maintenance with immunotherapies, including steroids

Acute CIDP vs Fluctuating GBS— Criteria

- Patients thought to have GBS should be considered to have acute CIDP if:
 - They deteriorate again after 8 weeks from onset or have more than 3 TRFs
 - They have no CN involvement
 - They have no autonomic symptoms
 - NCV is more compatible with CIDP

CIDP—Long-term Prognosis

- n=38 seen at Chiba University Hospital 1990–2000
 - Evaluated at least q2 mo; NCS at least annually
 - Hughes Grade 0–6
- Follow-up 5 yrs after therapy initiation
 - 89% corticosteroids
 - 45% IVIG
 - 34% PE
 - 5% AZA, 5% CTX
 - 58% combined therapy
- Outcomes
 - 26% complete remission (Hughes 0 >2 yrs)
 - 61% partial remission (Hughes 1 or 2; all ambulatory)
 - 13% nonambulatory or relapsing course (Hughes Grade ≥3;
 1 death)

Kuwabara S et al. J Neurol Neurosurg Psychiatry. 2006;77:66-70.

CIDP—Long-term Prognosis (cont)

- Hughes improvement ≥1 within 2 mo of initiation
 - 70% corticosteroids
 - 82% IVIG
 - 58% PE
- Complete remission, treatment (n=10)
 - 9 on corticosteroids
 - 1 on IVIG
- Ongoing treatment
 - 39% dependent on immunotherapies

Kuwabara S et al. J Neurol Neurosurg Psychiatry. 2006;77:66-70.

CIDP—Long-term Prognosis (cont)

- Prognostic factors predicting complete remission
 - Subacute onset (Rx within 6 mo)
 - Symmetric symptoms
 - No atrophy
 - Distal nerve NCS abnormalities
 - Initial corticosteroid response

- Poor prognostic factors
 - Insidious onset
 - Asymmetric symptoms
 - CB or TD in intermediate segments (forearm or lower leg)
 - Absence of sural sparing

Kuwabara S et al. J Neurol Neurosurg Psychiatry. 2006;77:66-70.

MMN—Clinical Features

- Male > female, 3:1
- Pattern of nerve involvement
- Upper extremity > lower extremity
- Motor conduction block in clinically involved nerves with normal SCV over the same segments
- May have some degree of abnormal temporal dispersion,
- GM1 antibodies in some patients (60%)
- Focal motor conduction block (40%–50%) in 2 or more nerves, excluding common sites of nerve entrapment
- Normal sensory conduction across area of block

MMN—Treatment

- IVIG
 - Randomized controlled trials: positive effect
 - Effect is temporary and follow-up infusions needed
 - Frequency of monthly IVIG is individualized and quite predictable in a given patient
 - IVIG is the only drug that helps MMN
- Other immunomodulating drugs
 - Corticosteroids: ineffective
 - Plasma exchange: not effective
 - Mycophenolate: not effective
 - Cyclophosphamide: inconsistent responses
 - Rituximab: variable response

van Schaik IN et al. *Cochrane Database Syst Rev.* 2005;(2):CD004429; Umapathi T et al. *Cochrane Database Syst Rev.* 2005;(3):CD003217.

MMN–Long-term IVIG Issues

- Increased conduction block and axonal degeneration in prior IVIG studies with follow-up to 8 yrs
 - Van den Berg-Vos et al. *Brain* 2002;125:1875-1886
- n=10 pts with conduction block
- Mean age at onset 46 8 yrs
- IVIG 2g/kg q4 wks x 3 mos followed by maintenance infusions
 - If no functional decline, monthly dose decreased by 0.4 gm/kg
 - If functional decline, monthly dose increased by 0.4 gm/kg
 - Over time, IVIG dose "gradually adjusted," so no functional decline between infusions
 - Average maintenance IVIG dose: 1.63 g/kg
- Follow-up mean 7.25 yrs (3.5–12)

Vucic S et al. *Neurology* 2004;63:1264-1269.

MG—Diagnostic Criteria

- Characterized by fluctuating and fatiguing weakness of bulbar, ocular, and skeletal muscles
- Repetitive nerve stimulation confirms defects in neuromuscular junction typical of MG
- SFEMG
- AChR antibodies
- MuSK antibodies

van Schaik IN et al. *Cochrane Database Syst Rev.* 2005;(2):CD004429; Umapathi T et al. *Cochrane Database Syst Rev.* 2005;(3):CD003217.

MG—Differential Diagnosis

- Lambert Eaton syndrome (LEMS)—a presynaptic disorder on the NMJ associated with Ab to voltage-gated calcium channels (clinical overlap with MG)
 - Small resting CMAP (>10%) decreasing with low Hz stimulation
 - Facilitation with activation
 - Initial decrement at 20–50 Hz followed by facilitation more than 200% (small muscle of hand)
- Others
 - Myasthenic crisis
 - Botulism
 - Congenital myasthenic syndromes

Guardia CF et al. Assessment of Neuromuscular Transmission: Multimedia. Available at http://emedicine.medscape.com/article/1140870-media. Accessed on August 1, 2010.

MG—Treatment: EFNS Consensus Criteria

- Anticholinesterase agents (pyridostigmine) for symptomatic relief
- Oral prednisone
- Immunosuppressants for steroid-sparing effect (azathioprine, mycophenolate mofetil, cyclosporine, tacrolimus, rituximab)
- Plasma exchange or IVIG (both effective) for a crisis, before thymectomy, for severe exacerbations, or in patients with inadequate response to other agents
 - IVIG is more accessible
 - Plasma exchange may work faster
- Removal of thymoma
 - Effect of thymectomy is being reconsidered but remains an option

Elovaara I et al. *Eur J Neurol.* 2008;15:893-908. Hughes RA et al. AAN Practice Parameter. *Neurology.* 2003;61:736-740.

MG—Treatment and Outcomes

IS=immunosuppressant; Anti-AchE=cholinesterase inhibitor; MGFA=Myasthenia Gravis Foundation of America.

Adapted from: Kawaguchi N et al. J Neurol Sci. 2004;224:43.

MG—Treatment and Outcomes (cont)

Adapted from: Grob D et al. Muscle Nerve. 2008;37:141.

Summary of Key Points

- We have reviewed four disorders of the neuromuscular system that cause weakness—GBS, CIDP, MMN, and MG
- Diagnosis of individual cases requires analysis of features of the history and physical as well as laboratory findings
- Electrophysiological testing and interpretation are pivotal to the diagnosis of disorders that in many cases have no known specific diagnostic test or biological marker

Summary of Key Points (cont)

- Although PEx and IVIG may work to hasten recovery in GBS, corticosteroids are ineffective in GBS
- PEx and IVIG are the only evidence-based treatments for CIDP, although prednisone is frequently used
- MMN has proven efficacy to IVIG but is not responsive to PEx, and may be exacerbated by corticosteroids

Summary of Key Points (cont)

- Evidence-based treatments for MG include anticholinesterase agents; oral prednisone; immunosuppressants for steroid-sparing; and PEx or IVIG, particularly for acute exacerbations
- Some long-term challenges in the treatment of neuromuscular disease include:
 - GBS: Physical disability (20%), emotional and general health, and QoL
 - CIDP: Treatment dependency in up to half of patients and significant physical disability in 20%
 - MMN: IVIG dependency in the majority; need to refine IVIG dosing in settings of ongoing motor decline and axonal loss

To receive CME credit, please be sure to complete the posttest and evaluation.