Gene Panels: The Next Step in Hereditary Cancer Evaluation

Faculty

Julia Smith, MD, PhD (Moderator)

Clinical Director Cancer Screening Program at the Laura and Isaac Perlmutter Cancer Center at NYU Medical Center Director NYU and Bellevue Lynne Cohen Foundation and Caring Together Project for Woman with Increased Risk for Cancer New York, NY

Jeffrey Weitzel, MD

Jeffrey Weitzel, MD Director Division of Clinical Cancer Genetics City of Hope Duarte, CA

Adam Ofer, MD

Director of Gynecology Norwalk Hospital Norwalk, CT Background on hereditary basis for cancer – Breast cancer as the exemplar

Angelina Jolie's Double Mastectomy Puts Genetic Testing in the Spotlight

An effective intervention: Study of 483 BRCA carriers: >90% risk reduction

Rebbeck TR et al. J Clin Oncol. 2004;22(6):1055-1062.

Prospective Study of Breast Cancer Incidence in Women With a *BRCA1* or *BRCA2* Mutation Under Surveillance With and Without Magnetic Resonance Imaging

Annual surveillance with MRI is associated with a significant reduction in the incidence of advanced-stage breast cancer in *BRCA1* and *BRCA2* carriers.

Warner E et al. J Clin Oncol. 2011;29(13):1664-1669.

Oophorectomy Reduces Ovarian Cancer, Breast Cancer, and All-Cause Mortality

Greatest breast cancer risk reduction among *BRCA1* mutation carriers without a prior dx of breast cancer who had their oophorectomy < age 50

HR: 0.15 (95% CI 0.04-0.63)

Age < 50y 0.41	All-cause mortality after risk-reducing salpingo-oophorectomy, HR (98% CI)	0.40 (0.26–0.61)
(0.23–00.07)	Age < 50y	0.41 (0.25–00.67)
Age ≤ 50y 0.37 (0.15-0.94)	Age ≤ 50y	0.37 (0.15–0.94)

CI=confidence interval; HR=hazard ratio

Adapted from Clague J et al. PloS One. 2011;6(9):e25632.

Genetic status is helping to determine composition of breast and ovarian cancer treatment regimens

Why Family History Matters

The Follow-Up Visit

- Positive Results
- Negative Results
 - Barking up the family tree
 - Discussing Familial Risk
- Cancer Risk Reduction
 - Screening options
 - Medical management choices
 - Lifestyle choices

Evolving Models of Practic	e for Genetic Cancer Risk Assessn	nent (GCRA)	
Model	Benefits	Limitations	
Academic Model			
Academic/medical center model: Patients referred to cancer genetics program, seen by interdisciplinary team (genetic counselor, nurse, physician). Pre- and post- genetic testing counseling and	 Comprehensive state-of-the-art personalized GCRA delivery including genetics-focused physical exam and medical management Level of care expected of a cancer center setting; billable patient visits 	 Through-put may be limited by physician availability, personnel costs and time intensity of providing comprehensive GCRA service Possible community clinician barriers to referral 	
integrated risk assessment	Critical research linkage		
Community Models			
Collaborative model: Community center partners with academic center of excellence	Advanced practice-based support from the academic center for community center clinicians. Patients receive high level care Access to the academic center clinical and research data forms and genetics research	 Possible fees for academic oversight Time commitment for quality assurance activities 	
Medical practice model: Oncologist as genetic consultant or other trained/designated physician initiates genetic testing ⁺ ; only refers patients with positive or ambiguous results to genetics provider (who may or may not be on-site)	Immediate offering of genetic test may be effective means of GCRA delivery for carefully selected patients Complicated cases referred to genetics provider for thorough counseling and risk assessment Bill as usual fee-for-service Potential downstream revenue generation	Nuances of GCRA underestimated; possible errant test/testing approach; patient and family may be falsely reassured Patient may not be given sufficient information to make informed decision for genetic testing/testing strategies	
Genetic referral model (or Cancer risk referral model): Patient referred to community- based cancer risk counselor (GC ⁰ /APN ⁵) for genetic counseling/testing, summary note sent to referring physician	Meaningful counseling and risk assessment service provided by qualified personnel	Patient given general vs. tailored risk reduction recommendations No or limited billable GCRA service no or limited physical exam to help guide assessment Cancer genetics research participation limited	Adapted from Weitzel JN et a <i>CA Cancer J C</i> 2011;61(5):327

Triage model*: APN performs initial personal/family history screening; triages to GC for further assessment; referring physician provides patient- recommendations	 Streamlined referral process Patients requiring individual counseling identified and seen in a timely manner Efficient use of limited genetics provider resources 	 APN/GC may not have adequate cancer genetics knowledge to triage/assess appropriately Referring physician may not be familiar with current risk level- based medical management Cancer genetics research participation limited
Group model*: At-risk individuals attend a group-focused cancer genetics presentation, followed by individual counseling sessions as indicated based on risk and/or as desired by patient	 Efficient for providing overview of GCRA and pre-screening referred patients Efficient use of limited genetics provider resources 	 Ineffective for anxious patients, particularly if recent cancer diagnosis Time constraints to address individual questions Group session not a billable service Patient confidentially/privacy may be compromised
Telemedicine model: Community center servicing a geographically or socioeconomically underserved population partnered with an academic center of excellence	 Patients gain access to academic center -level of clinical care, including opportunities for research participation Efficient use of limited genetics provider resources 	 Requires telemedicine set up and time commitment for quality assurance consultation services may not be billable may require funding to establish partnership
Remote open access model*: Educational materials and phone and/or internet counseling provided by for-profit company	 Counseling may be scheduled at the convenience of the patient (possibly from home) May be cost savings 	 Little quality outcomes data Possible lack of local clinician communication or follow-up No research opportunities

Adapted from Weitzel JN et al. CA Cancer J Clin. 2011;61(5):327-359.

How Have We Learned Cancer Genetics Practice in the Past?

"The hard way"

- Self-directed studies
- Hands-on experience
- Gleaning the literature
- □ Formal fellowship training

(Medical Oncology, Clinical Genetics, ? Both)

Educational Resources

- More robust literature dealing with all the domains
- ASCO University Curriculum and Courses
- NSGC Short Courses, Starter Packs, Flip Charts, Cancer SIG Listserv for members
- ONS Curriculum courses, scope and practice guidelines, Cancer SIG
- ISONG scope and practice guidelines
- National Coalition for Health Professional Education in Genetics (NCHPEG)
- City of Hope Intensive Course

ASCO=American Society of Clinical Oncology; ISONG=International Society of Nurses in Genetics; NSGC=National Society of Genetic Counselors; ONS=Oncology Nursing Society; SIG=Scientific Interest Group.

The Follow-Up Visit

- Positive Results
- Negative Results
 - Barking up the family tree
 - Discussing Familial Risk
- Cancer Risk Reduction
 - Screening options
 - Medical management choices
 - Lifestyle choices

Why Family History Matters

RAD51C Germline Mutations in Breast and Ovarian Cancer Cases from High-Risk Families

Jessica Clague^{1,9}, Greg Wilhoite^{2,9}, Aaron Adamson², Adam Bailis³, Jeffrey N. Weitzel¹, Susan L. Neuhausen²*

1 Division of Clinical Cancer Genetics, Beckman Research Institute at the City of Hope National Medical Center, Duarte, California, United States of America, 2 Department of Population Sciences, Beckman Research Institute at the City of Hope National Medical Center, Duarte, California, United States of America, 3 Department of Molecular and Cellular Biology, Beckman Research Institute at the City of Hope National Medical Center, Duarte, California, United States of America

Comme	rcial N	lultige	ne Pa	anels A	vaila	ble in	the	Unite	d Sta	ates
	BRCAPlus	BreastNext	OvaNext	CancerNext	myRisk	ColoNext	Coloseq	BROCA	MDL 30	GeneDx
APC				х	х	х	х	х	х	х
ATM		х	х	х	х			х	х	Х
ATR								х		
AXIN2									х	Х
BAP1								х	х	
BARD1		х	х	х	х			х	х	Х
BIP1									х	
BLM										Х
BMPR1A				х	х	х	х	х	х	Х
BRCA1	х	х	х	х	х			х		Х
BRCA2	х	х	Х	х	х			Х		Х
BRIP1		х	Х	х	х			Х	Х	Х
CDH1	х	х	х	х	х	Х	х	Х	Х	Х
CDK4					х			х		х
CDKN2A					х			х		х
CHEK1								х		
CHEK2		х	х	х	х	x		х	х	
DCC									х	
EPCAM			х	х	х	x	х	х	х	х
ExOx									х	
FAM175A/Abraxas								x		x
FANCC										
GALNT12								х		
GEN1								х		
GREM1								x		
HOXB13								x		x

	BBCAPlus	BroastNovt		CancerNevt	myPick	ColoNext	Colosea	BROCA	MDI 30	GeneDy
MI H1	BROANDS	DICUSTION	v	v	v	v	<u>v</u>	v	v v	V
MRE11A		×	x	×		^		x	X	x
MSH2		~	x	x	x	x	x	x	x x	x
MSH6			x	x	x	x	x	x	x	x
МИТҮН		х	X	X	X	X	X	X	X	
NBN		х	х	x	х			х	х	х
PALB2	Х	x	х	х	х			х	х	х
PDGFRA									х	
PMS1									Х	
PMS2			х	х	х	х	х	х	Х	х
PRSS1								х		
PTEN	х	х	х	х	х	х	х	х	х	х
RAD50		x	х	х				х	х	
RAD51								х		
RAD51C		x	х	х	х			х	Х	х
RAD51D					х			х	Х	
RBBP8								х		
RET								х		
SMAD4				x	х	х	х	x	х	
STK11	x	x	х	x	х	х	х	х	х	х
TP53	x	x	х	x	х	х	х	х	Х	х
TP53BP1								х		
VHL1								х		
XRCC2								х	х	х
XRCC3								х		

	POSITIVE: MUTATION DETECTED
INTERP	RETATION
This indiv	idual is heterozygous for the c.1082deIA mutation in the BRIP1 gene.
 Risk esti 	mate: up to a 3 fold increased risk for breast cancer (females only)-+
The expre	ession and severity for this individual cannot be predicted.
Genetic c	ounseling is a recommended option for all individuals undergoing genetic testing.
RAD50, RAD The c.1082d translational disease-cau Med 2008;10	D51C, STK11, and TP53. IelA mutation, located in exon 8 (coding exon 7) of the BRIP1 gene, results from a deletion of one nucleotide at position 1082, causing a frameshift with a predicted alternate stop codon. Since frameshifts are typically deleterious in nature, this alteration is interpreted as a sing mutation (ACMG Recommendations for Standards for Interpretation and Reporting of Sequence Variations. Revision 2007. Genet 1/294).
++The BRIP interacts in v Gynecol On	If gene is involved in the Fanconi anemia (FA)–BRCA pathway, which is critical for DNA repair by homologous recombination, and ivo wth BRCA1. Mutations in BRIP1 are estimated to confer up to a 2-3 fold increased in breast cancer risk (Pennington KP et al. col. 2012 Feb;124(2):347-53) compared to the general population; however this risk may be higher for female carriers under the age of 50 col.
na Courtos	sy of Jeffrey N Weitzel MD

CHIEBERTNANICALIES SIGNIED BTC Elizabeth Cheo, MD, Assistant Medical Director, and J. Jennifer Wei, MD, PhD, Medical Director, on 12/13/2012 at 05:11:54 PM

Image Courtesy of Jeffrey N. Weitzel, MD

Human Genetic Variation

- We find more genes with deleterious mutations
 - We also find more VUS
- There can be more than 1 attributable genetic variation in a given case
- The phenotype and the test result may be discordant
 - Or are they?

Cancer Multigene Panel Testing Levels of Possible Information

Genes associated with a well-known syndrome	 Highest cancer risks Risk for most associated cancers well defined Screening and management guidelines well defined Clear implications for other family members
Genes not associated with a well-known syndrome, but well researched	 Moderate to high cancer risks Risk fairly well defined for some, but not all cancers Screening and management guidelines dependent upon test results and family history Implications for family members nuanced
Newer genes	 Cancer risk(s) not well defined (most moderate) Management guidelines not well defined Implications to family members not clear Frequent variants of uncertain significance May not change medical management

ENIGMA: Rare Gene/Variants Working Group

ENIGMA

(Evidence-based \underline{N} etwork for the Interpretation of \underline{G} ermline \underline{M} utant Alleles)

Great need to understand:

- clinical implications of rare variants
- potentially broader phenotypes of "known" high penetrance genes
- define penetrance for the genes in hand

Multiple approaches to collaborative family studies, collection of pedigrees and multiplex test results will be considered

 established research networks, new industry relationships, direct to family recruitment such as the PROMPT study
 PROMPT=Prospective Registry of Multiplex Testing.
 ENIGMA. http://enigmaconsortium.org. Accessed May 6, 2015.

Cancer Screening & Prevention Program Hereditary Cancer Risk Assessment and Management

- There is clearly a potential to benefit carefully selected and counseled families, with ever broader arrays of genetic tools
- PALB2 is among the first rare variant genes to acquire adequate data for absolute risk estimation
- Genetic technologic advances are changing diagnostic approaches
- Surveillance and prevention can improve survival in at-risk individuals
- Protocols will need to be adapted to lower risk

Conclusions

- Training in genetic/genomic cancer risk assessment and counseling is important for clinical implementation of NGS analyses, and should be disseminated
- Participation in cancer genetics research registries is a critical contribution to the knowledge base necessary to develop the evidence for advice
- The remarkable advances in NGS technologies should be brought to bear to enhance access globally

"He is a better physician that keeps diseases off us, than he that cures them being on us; prevention is so much better than healing because it saves the labour of being sick."

Thomas Adams, 1618

Thank you!