argeting the Immune System to Improve Patient Outcomes in

Advanced NSCLC

A CME-certified **Oncology Exchange** Activity

I Rockpointe Oncology om Genentech and Merck & Co., Inc.

Jointly sponsored by Potomac Center for Medical Education and Rockpointe Oncology This activity is supported by an independent educational grant from Genentech and Merck & Co., Inc.

Faculty

John Powderly II, MD, CPI

President, Carolina BioOncology Institute PLLC Adjunct Clinical Assistant Professor of Medicine University of North Carolina School of Medicine Duke University School of Medicine Huntersville, NC

Suresh S. Ramalingam, MD

Professor of Hematology and Medical Oncology Director, Division of Medical Oncology Emory University Winship Cancer Institute Atlanta, GA

Disclosures

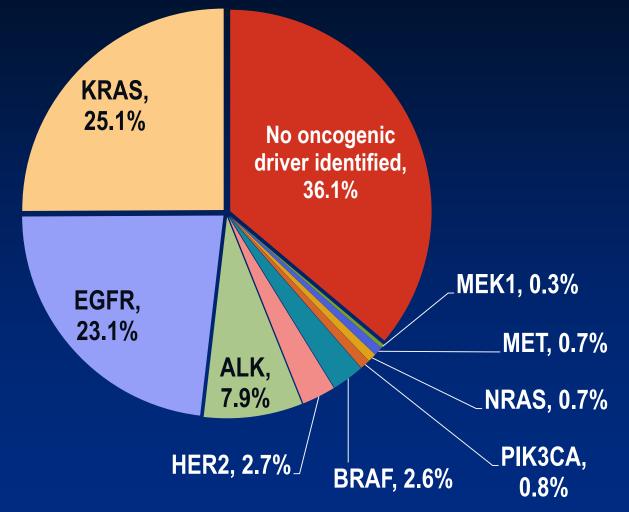
Steering Committee and Program Faculty

The steering committee and faculty reported the following relevant financial relationships that they or their spouse/partner have with commercial interests:

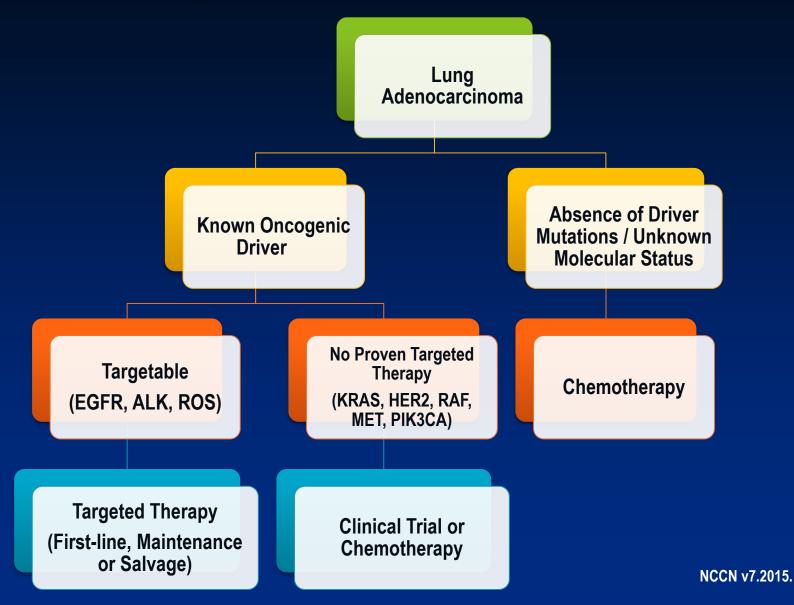
John Powderly II MD, CPI: *Consultant:* Amplimmune, AstraZeneca, Bristol-Myers Squibb, Genentech, Merck; *Research:* Amplimmune, AstraZeneca, Bristol-Myers Squibb, CellDex, EMD Serono, Genentech, Imclone/Lilly, InCyte, Macrogenics; *Speaker/Speaker's Bureau:* Bristol-Myers Squibb, Dendreon, Merck; *Shareholder:* BioCytics (Founder), BlueBird Bio, Juno, Kite Pharmaceuticals, Lion Biotech

Suresh S. Ramalingam, MD: *Consultant:* AstraZeneca, Bristol-Myers Squibb, Celgene, Genentech, Lilly, Merck

Non-faculty Content Contributors


Non-faculty content contributors and/or reviewers reported the following relevant financial relationships that they or their spouse/partner have with commercial interests:

Latha Shivakumar, PhD, CHCP; Blair St. Amand; Jay Katz, CHCP; Ashley Marostica: Nothing to disclose


Learning Objectives

- Evaluate mechanisms of action of immunotherapies in advanced NSCLC
- Assess emerging data for immune checkpoint inhibitors in advanced NSCLC
- Discuss the role of biomarkers in patient selection for immunotherapies
- Educate patients with NSCLC about promising immunotherapeutic agents and clinical trial opportunities

Lung Cancer Mutation Consortium: Incidence of Driver Mutations

Treatment Algorithm For Advanced NSCLC

Immunotherapies Beyond Frontline Therapy

Science "Breakthrough of the Year"; 2014 Special *Nature* Edition

Immunotherapy: Basic Approaches

Immunization

- Utilize cancer vaccines to promote antitumor immunity
- Passive
 - Activated immune cells to enhance antitumor immunity
- Non-specific
 - Promote effector cells against tumor cells
 - Inhibit regulatory cells

Tumor Immune Evasion

- Immune system is exponentially more adaptable than tumor
- Vaccines are the greatest success story of modern medicine by eradicating infectious diseases
- So, why haven't cancer vaccines worked?

Infections

- Discriminate self from *non*-self (obvious)
- Tumors
 - Discriminate self from *altered*-self (subtle)
- Self-tolerance = Self-preservation
 - 98% anti-self lymphocytes undergo apoptosis
 - Remaining T-cells >90% tolerizing surveillance
 - Our immune system balance favors self-tolerance

Antitumor Immunity

- Major requisites
 - Recognition of tumor-related protein(s) as foreign
 - Mount an appropriate immune response
- Both steps involve a number of well-regulated events
- Failure of one or more steps aids tumor progression and metastasis

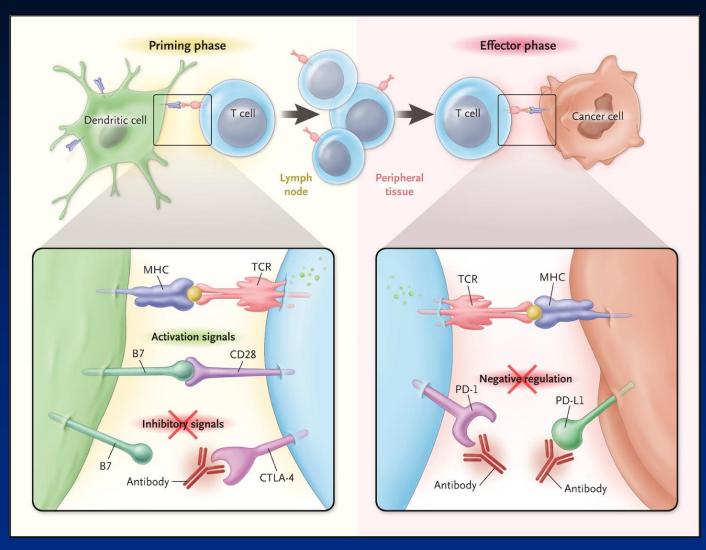
CTLA-4 and PD-1/PD-L1: The Brakes on T cell Activation

T-cell receptor: Antigen-MHC

CD28: B7 IL-2 IFN

ACCELERATOR FEDAL OTVER. Fits usingly and accuratly over accelerator pedal Scolpsi Linowner life of Boor mail

CTLA-4: B7 **PD-1: PD-L1**



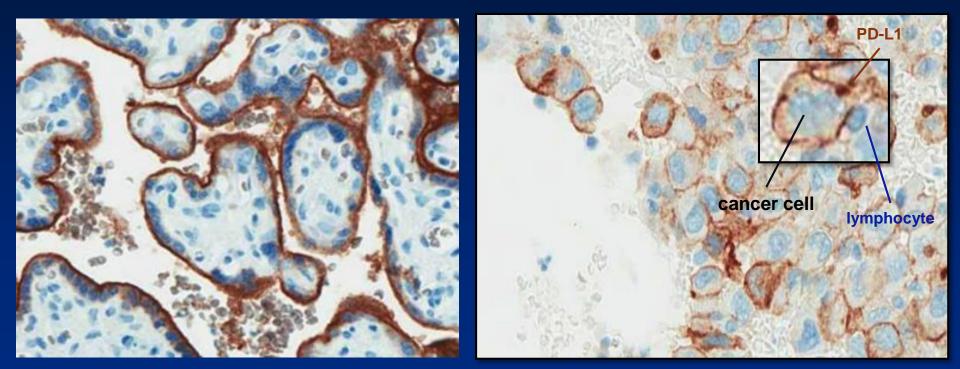
Vaccine?

Immune Checkpoint CTLA-4

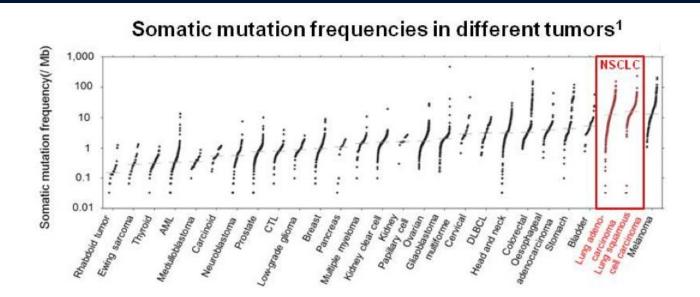
- CTLA-4 "Cytotoxic T Lymphocyte Antigen 4," receptor expressed on T cells
 - James Allison, PhD discovered in 1990s
 - Most important inhibitory receptor (tolerance) during antigen presentation in lymph nodes
 - Double gene knockout mouse model: Develop lymphoproliferative disease and fulminant auto-immunity toxicity and die by 6 weeks of life
 - Human polymorphisms are associated with familial tendency towards autoimmune diseases
 - Ipilimumab first checkpoint inhibitor developed, anti-CTLA-4 mAb

Tumor Immunotherapy CTLA-4 vs PD-1/PD-L1

From The New England Journal of Medicine, Ribas A et al., Tumor Immunotherapy Directed at PD-1, 366, 2517-2519. Copyright © (2012) Massachusetts Medical Society. Reprinted with permission from Massachusetts Medical Society.


Immune Checkpoint: PD-1/PD-L1 PD = "Programmed Death"

- PD-1 receptor (on lymphocytes) has two ligands: PD-L1 and PDL2
- PD-L1 ligand:
 - Expressed on immune cells and dynamically expressed in tissue (and tumors) during inflammation
 - PD-L1 "shield for tumors to hide from immune cells"
 - During inflammation, interferon gamma will upregulate PD-L1 expression
- PD-1/PD-L1 axis: Most important "break" (tolerance) at peripheral site of inflammation
- PD-1 or PD-L1:
 - Pharmacologic blockade of either PD-1 or PD-L1, overcomes "tolerance" and enables activated T cells to destroy tumors
 - Double gene knockout mouse model developed mild tendency towards auto-immunity with inflammatory stimuli
- Nivolumab and pembrolizumab: first anti-PD-1 mAbs developed and FDA approved


Placenta and Tumors Express PD-L1 to Evade Immune Recognition

Placenta

Tumor

Lung Cancer Immunotherapy

- High rates of somatic mutations in lung cancer may contribute to increased immunogenicity²
- Therapies targeting the PD-L1/PD-1 pathway will alter the treatment of NSCLC

Reprinted by permission from Macmillan Publishers Ltd: NATURE Lawrence et al, Nature, 2013; 499(7457): 214-218. Copyright (2013). Chen DS et al. *Clin Cancer Res.* 2012;18:6580-6587.

Checkpoint Blockade: Drugs in Development

Anti-CTLA-4	Anti-PD-L1	Anti-PD-1
Ipilimumab (Fully human IgG1) FDA Approved 2011	MDX-1105, (Fully human IgG4); Phase I	MDX-1106, Nivolumab, (Fully human IgG4) FDA-approved Melanoma & Squamous Lung
Tremelimumab (Fully human IgG2); Phase III	MPDL3280A, RG7446, Atezolizumab; Phase II-III	CT-011 Pidilizumab (Humanized IgG1); Phase II
	MEDI4736, Durvalumab ; Phase III	MK3475 Pembrolizumab (formerly Lambrolizumab) (Humanized IgG4) FDA-approved 2014 – Melanoma
	MSB0010718C, Avelumab; Phase I-II	AMP-224 (B7-DC/IgG1fusion protein); Phase I-II
		MEDI0680, AMP514; Phase I

Case Presentation 1: Mrs. RDB

Mrs. RDB is a 61-year-old African American female presenting with cough in 2005.

- Imaging showed dominant LUL mass with bilateral lung mets and sclerotic bone mets
- Bronchoscopy Bx: squamous cell lung carcinoma (stage IV)
- PMH: Tobacco 1 ppd x 45 years (quit 2 years prior), HTN, DM

Case Presentation 1: Mrs. RDB (cont.)

• Treatment

- Aug 2005: carbo/vinorelbine x 4 months, with >50% reduction by Feb 2006
 - Monthly zoledronic acid
- Dec 2006: Progressed
 - 2nd-line gemcitabine/vinorelbine x 4 months
- May 2007: Progressed LLL, RUL, mediastinal LAD, and new bone mets
- ? Option 3rd-line treatment

Polling Question

Which third-line treatment option would you choose for this patient in 2015?

- 1. Docetaxel
- 2. EGFR-targeted therapy
- **3.** VEGFR-targeted therapy
- 4. PD-1 mAb

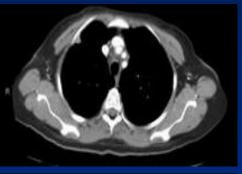
Case Presentation 1: Mrs. RDB (cont.)

May 2007: Informed Consent PD-1 mAb trial (MDX-1106 001, phase I study, nivolumab)

- Single dose nivolumab 1 mg/kg (lowest dose cohort, 1st lung patient ever dosed)
 - Grade 1 rash, grade 1 diarrhea, grade 1 elevated amylase/lipase, tumor pain flare
- 8-week restaging: 41% RECIST partial response
 - ANA converted from neg to + 1:160
- 12 week "confirmatory" scan showed new spine met (mixed response)
 - Re-challenged with nivolumab at 16 weeks, but progressed.

MDX-1106 001: Phase I Study of Single-agent Anti-PD-1 (MDX-1106, nivolumab) in Refractory Solid Tumors: Safety, Clinical Activity, Pharmacodynamics, and Immunologic Correlates

May 2007



Brahmer JR et al. J Clin Oncol. 2010;28:3167-3175.

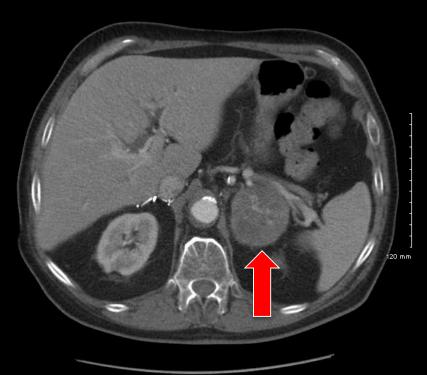
Case Presentation 2: Mr. JN

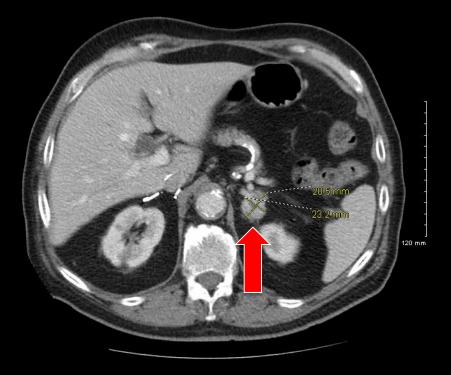
Mr. JN is a 69-year-old Caucasian male who presented in 2006 with cough. Imaging showed RUL mass.

- Jan 2006: RUL lobectomy: path squamous cell carcinoma (with mixed adenocarcinoma components) T3N0, stage IIB. Declined adjuvant chemo.
- Jan 2008: New R adrenal mass 5x4 cm, Bx: adenocarcinoma (stage IV)
- April 2008: R adrenalectomy, Path 4.5 cm poorly differentiated carcinoma (EGFR wild-type)
- June 2008: CT scan NED

Case Presentation 2: Mr. JN (cont.)

- June 2008: gemcitabine/carbo/bevacizumab x 1 cycle
 - Prolonged thrombocytopenia, transfusions
- Aug 2008: switched to carbo/pac/bevacizumab x 3 cycles
 - Taxane induced dermatitis
- Feb 2009: Progression L adrenal mass 5.5 cm (hypermetabolic on PET)


Case Presentation 2: Mr. JN (cont.)


- Feb 2009: Informed Consent MDX-1106 003 (phase lb)
 - Nivolumab 3 mg/kg Q2 weeks x 2 years
 - Baseline ANA + 1:40, CRP +, rheum factor +, vitiligo,
 - Adverse events:
 - COPD exacerbation x 2, Rx steroids
 - RML pneumonia, Rx Abx
 - Corneal herpetic outbreak
 - Squamous skin cancers x 3, each resected
- Feb 2011: completed 2 years of nivolumab

Case Presentation 2: Mr. JN (cont.)

- July 2015: Ongoing durable partial response
- PD-1 nivolumab
- Longest PD-1 lung survivor (> 6 years) February 2009

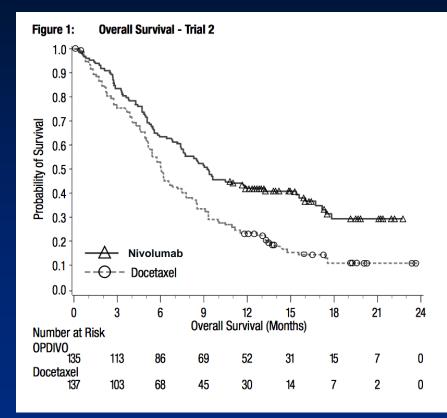
September 2009

Polling Question

Which of the following grade 3-4 adverse events is most likely seen in a patient with advanced NSCLC receiving anti-PD-1 antibody?

- 1. Pneumonitis
- 2. Febrile neutropenia
- 3. Dehydration
- 4. Rash

PD-1 Blockade in Lung Cancer


Nivolumab Phase I: Safety, Activity, and Immune Correlates of Anti-PD-1 Antibody in Cancer

- Phase Ib, 296 patients with solid tumors stage IV
 - Rx monotherapy mAb Q2 weeks (4 doses over a 8 week cycle) up to 12 cycles until PD or CR
 - Cumulative objective response (RECIST)
 - Melanoma: 28%
 - Renal Cell Cancer: 27%
 - Non-small Cell Lung Cancer: 18%
 - 65% of responders were durable >1 year
 - Drug-related Aes: 14% (fatigue, cough, fever, rash, diarrhea, nausea)
 - Drug-related grade 3-4 toxicity: 11%
 - Grade 3-4 pneumonitis: 1%, including 3 deaths from pneumonitis (2 NSCLC, 1 renal)
 - MTD not reached; 5% of patients stopped therapy due to AEs
 - Among 42 archived tumors, response correlated with PD-L1 tumor expression (P=0.006)

Topalian SL et al. *N Engl J Med.* 2012;366:2443-2454.

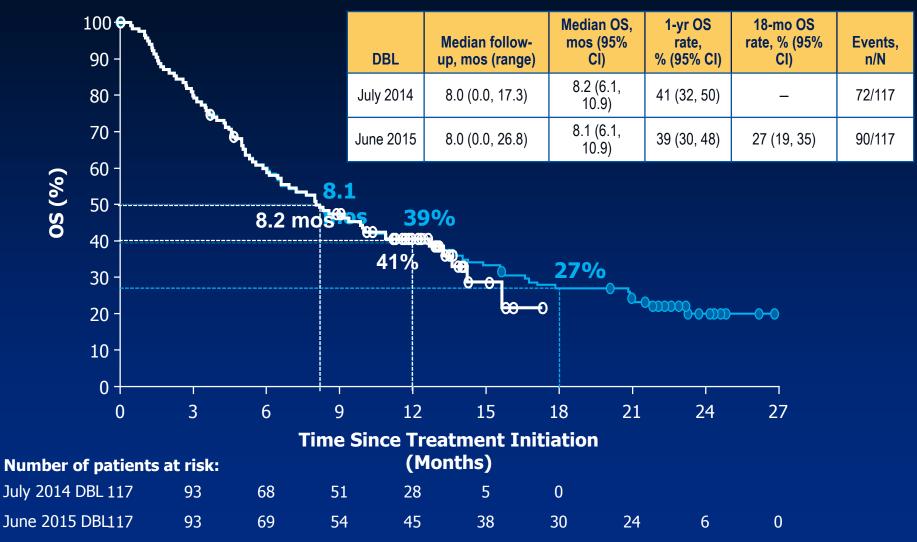
CheckMate 017: Nivolumab vs Docetaxel 2nd-line Squamous Cell Lung Cancer: FDA-approved March 2015

- Phase III, randomized 272 patients
 - Docetaxel vs nivolumab 3 mg/kg Q2w
- Interim analysis:
 - Median OS 6 months vs 9 months
 - 1 year OS: 22% vs 42%
 - 41% reduction risk of death
 - Hazard ratio 0.59 (P<0.001)
- ORR nivo: 27%, of which 63% durable
- ORR docetaxel: 12%, of which 33% durable

CheckMate 017: OS and PFS According to PD-L1 Expression Level Unstratified Hazard Ratio (95% CI)

					01100			
	Nivolumab	Docetaxel	0.125	0.25	0.50	1.00	2.00	
Overall Survival	No. of p	atients	←	Nivolumab	Better	-	Docetaxel Better	\rightarrow
≥1%	63	56						0.69 (0.45-1.05
<1%	54	52				<u> </u>		0.58 (0.37-0.92
≥5%	42	39		_		-		0.53 (0.31-0.89
<5%	75	69						0.70 (0.47-1.02
≥10%	36	33						0.50 (0.28-0.89
<10%	81	75						0.70 (0.48-1.01
Not quantifiable at baseline	18	29				_ i _		0.39 (0.19-0.82
Progression-free Survival	No. of p	atients						
≥1%	63	56						0.67 (0.44-1.01
<1%	54	52						0.66 (0.43-1.00
≥5%	42	39		_				0.54 (0.32-0.90
<5%	75	69						0.75 (0.52-1.08
≥10%	36	33						0.58 (0.33-1.02
<10%	81	75						0.70 (0.49-0.99)
Not quantifiable at baseline	18	29						0.45 (0.23-0.89

	Nivoluma	ıb (n=131)	Docetaxel (n=129)		
	Any Grade	Grade 3 or 4	Any Grade	Grade 3 or 4	
Any Event	58%	7%	86%	55%	


Treatment-related grade 3/4 adverse events reported in at least 5% of patients: pneumonitis, fatigue, decreased appetite, leukopenia

Brahmer J et al. N Engl J Med. 2015;373:123-135.

CheckMate 063: Nivolumab 3rd-line Squamous NSCLC

- 117 patients, (open label, 3rd-line)
 - Included patients regardless of PD-L1 status
 - Nivolumab 3 mg/kg IV Q 2 weeks
 - Objective Response Rate (ORR) = 15%
 - Of which 76% were durable

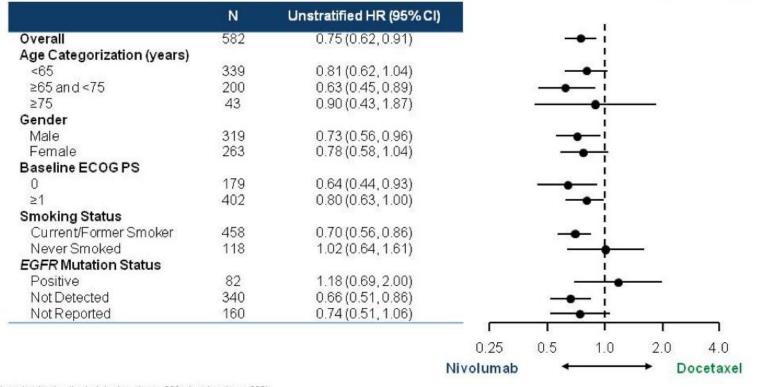
CheckMate 063: Overall Survival (all Treated Patients)

Data are based on July 2014 and June 2015 DBLs. Symbols represent censored observations

Horn et al, WCLC 2015

CheckMate 057: Nivolumab vs Docetaxel 2nd-line Non-squamous NSCLC

- Phase III, 582 patients randomized
- Nivolumab 3 mg/kg Q2W vs docetaxel 75 mg/m² Q3
- Primary endpoint OS
- Trial stopped early by DSMC, met its primary endpoints at interim analysis

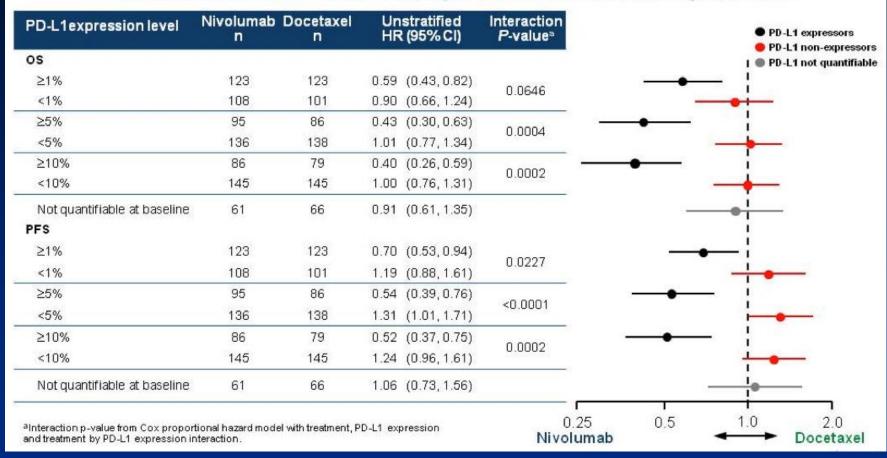


	Nivolumab (n=292)	Docetaxel (n=290)		
ORR	19%	12%		
P-value	0.0246			
Median DOR, mos	17.2	5.6		
•71 (24%) patients on nivolumab were treated beyond RECIST v1.1-defined progression •Non-conventional benefit was observed in 16 patients (not included in best overall response)				

Paz-Ares L et al. Presented at: American Society of Clinical Oncology, 2015 Annual Meeting; (Abstract LBA109).

CheckMate 057: Nivolumab vs Docetaxel 2nd-line Non-squamous NSCLC

Treatment Effect on OS in Predefined Subgroups



All randomized patients (nivolumab, n = 292; docetaxel, n = 290).

Paz-Ares L et al. Presented at: American Society of Clinical Oncology, 2015 Annual Meeting; (Abstract LBA109).

CheckMate 057: Nivolumab vs Docetaxel 2nd-line Non-squamous NSCLC

OS and PFS Hazard Ratios by Baseline PD-L1 Expression

Paz-Ares L et al. Presented at: American Society of Clinical Oncology, 2015 Annual Meeting; (Abstract LBA109).

CheckMate 057: Nivolumab vs Docetaxel 2nd-line <u>Non-squamous</u> NSCLC

Treatment-related AEs Reported in ≥10% of Patients

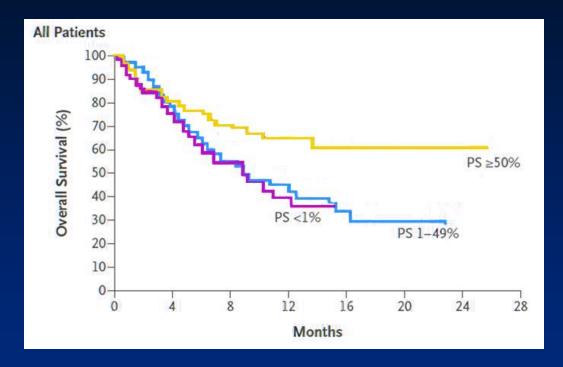
	Nivoluma	b (n = 287)	Docetaxel (n = 268)		
	Any Grade, %	Grade 3–4,ª%	Any Grade, %	Grade 3–4,ª%	
Total patients with an event	69	10	88	54	
Treatment related Salast AEs					

-related Select AES

	Nivoluma	b (n = 287)	Docetaxel (n = 268)	
	Any Grade	Grade 3-4ª	Any Grade	Grade 3-4ª
Endocrine,% Hypothyroidism	7	0	0	0
Gastrointestinal,% Diarrhea	8	1	23	1
Hepatic,% ALT in creased AST in creased	3	0 <1	1	<1 0
Pulmonary,% Pneumonitis	3	1	<1	<1
Skin,% Rash Pruritus Erythema	9 8 1	<1 0 0	3 1 4	0 0 0
Hypersensitivity/Infusion reaction, % Infusion-related reaction	3	0	3	<1

· Select AEs: AEs with potential immunologic etiology that require frequent monitoring/intervention

Includes events reported in ≥2.5% of patients.

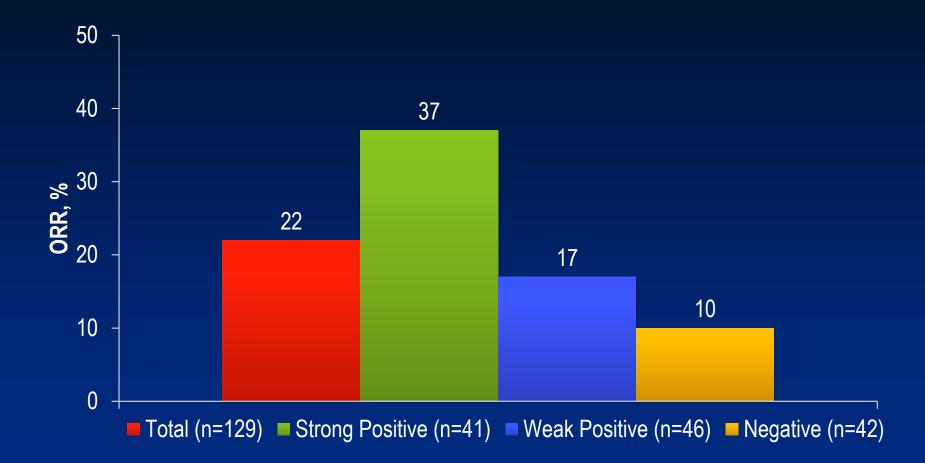

^aNo grade 5 events were reported at DBL;1 grade 5 event for nivolumab was reported post-DBL.

Paz-Ares L et al. Presented at: American Society of Clinical Oncology, 2015 Annual Meeting; (Abstract LBA109).

KEYNOTE-001: Pembrolizumab for Treatment of NSCLC

- FDA Approved October 2015 for 2nd line NSCLung, if PDL1 +
- 495 patients, phase IB study
 - Allowed front-line and prior chemo-treated patients
 - Randomized 2 mg/kg Q3w vs 10 mg/kg Q3w
 - Recent Bx required, training vs validation group: PD-L1+ >50% expression
- Results: ORR 19.4% (of which 84% durable)
 - Similar efficacy 2 mg/kg vs 10 mg/kg
 - If PD-L1 +, ORR 45.2%
 - If smoker, ORR 22.5% vs 10.3% never smoker
- Toxicity: fatigue, pruritis, decreased appetite
 - No clear difference between 2 mg/kg vs 10 mg/kg
 - 9% grade 3-5 treatment AEs, 1 patient pneumonitis death

KEYNOTE-001: Pembrolizumab for Treatment of NSCLC

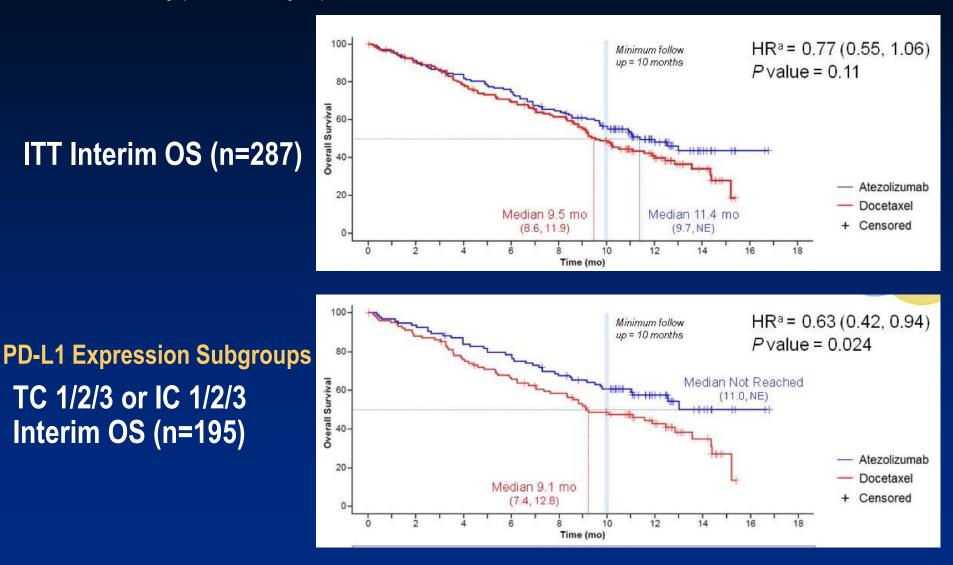


PS = proportion score % positivity of PD-L1 membrane staining on tumor

Select Adverse Events – Occurring in >4% of patients	Any Grade Grade 3-5			
(n = 495)	No. of patients (%)			
Fatigue	96 (19.4)	4 (0.8)		
Pruritus	53 (10.7)	0		
Decreased appetite	52 (10.5)	5 (1.0)		
Rash	48 (9.7)	1 (0.2)		
Arthralgia	45 (9.1)	2 (0.4)		
Diarrhea	40 (8.1)	3 (0.6)		
Nausea	37 (7.5)	4 (0.8)		
Hypothyroidism	34 (6.9)	1 (0.2)		
Asthenia	24 (4.8)	5 (1.0)		
Anemia	21 (4.2)	0		
Dyspnea	21 (4.2)	19 (3.8)		
Pyrexia	21 (4.2)	3 (0.6)		

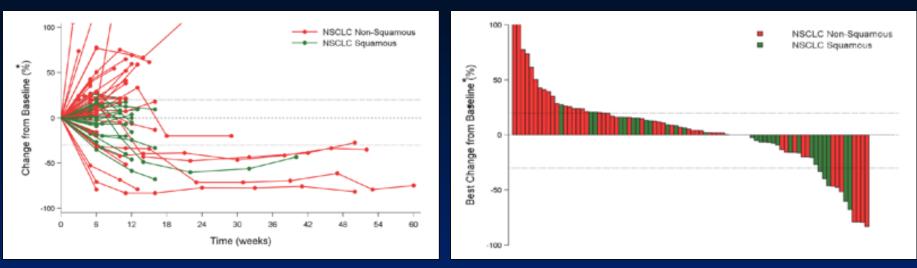
Garon EB et al. N Engl J Med. 2015;372:2018-2028.

Pembrolizumab: Response Rate by Level of PD-L1 Expression



Garon EB et al. N Engl J Med. 2015;372:2018-2028.

PD-L1 Blockade


Efficacy, Safety, and Predictive Biomarker Results from Phase II Atezolizumab (MPDL3280a) vs Docetaxel 2nd/3rd-line NSCLC

POPLAR Study (Interim Analysis)

Spira AI et al. Presented at: American Society of Clinical Oncology, 2015 Annual Meeting; (Abstract 8010).

MEDI4736 (Durvalumab) PD-L1 mAb

	MEDI4736 10 mg/kg q2w	MEDI4736 All doses
RECIST Response ^b		
Response evaluable ^c	13% (6/47)	16% (9/58)
PD-L1+	39% (5/13)	25% (5/20)
PD-L1-	5% (1/19)	3% (1/29)
Disease Control Rated		
Response evaluable ^c	30% (14/47)	35% (20/58)
PD-L1+	54% (7/13)	45% (9/20)
PD-L1-	32% (6/19)	24% (7/29)

Segal NH et al. Presented at: American Society of Clinical Oncology, 2014 Annual Meeting; (Abstract 3002). Brahmer J et al. Presented at: American Society of Clinical Oncology, 2015 Annual Meeting; (Abstract 8112).

Correlates and Biomarkers

- Presence of tumor infiltrating lymphocytes
- Auto-immunity
- PD-L1 expression: on tumor and immune cells
- Mutation load (mutanome)
 - Carcinogen exposure
 - Smoking status
 - Hypermutators (BRCA, Lynch syndrome)
 - Viral-mediated tumors

PD-L1 Tumor Expression

- Distinct mechanisms of PD-L1 expression
 - Interferon gamma induced dynamic upregulation in the inflammatory tumor microenvironment ("adaptive resistance")
 - Oncogenic driver mutations that constitutively express PD-L1
 - Epithelial to mesenchymal transformation (EMT) of the carcinoma phenotype

Predictive Correlates of Response to Anti-PD-L1 mAb MPDL3280a (Atezolizumab) in Cancer Patients

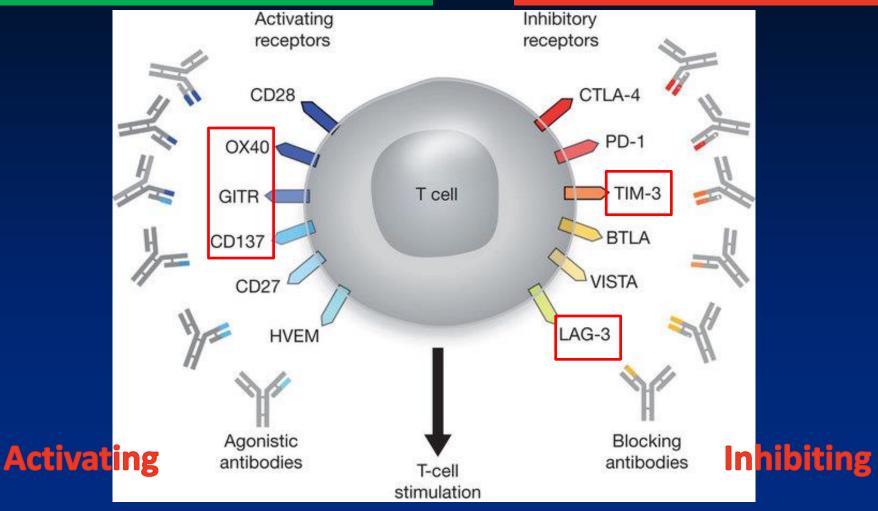
- Phase I trial of 277 patients, of whom 177 had biopsy and evaluable response
 - 28 paired biopsies
 - Immune mediated grade 3-4 events = 1% (no grade 3-4 pneumonitis)
- Results:
 - PD-L1 expression was more common on TIL, macrophages, and dendritic cells than on tumors
- RECIST response associated with:
 - High levels PD-L1 on immune cells (*P*=0.007), but not tumor PD-L1 expression
 - T helper type 1 (Th1) gene expression
 - CTLA-4 expression
 - Absence of fractalkine CX3CL1
 - NSCLC trend favoring smokers (42% vs 10%)
- Suggests the PD-L1 mAb blockade is most effective in:
 - Pre-existing immunity ("immune competence")
 - Re-invigorates anti-tumor response ("overcomes peripheral tolerance")

Herbst RS et al. Nature. 2014;515:563-567.

Mutational Landscape Determines Sensitivity to PD-1 Blockade in NSCLC

- Background: PD-1 and PD-L1 best responses appear in melanoma and lung cancer (which have high carcinogen exposure)
- 34 lung patients on Pembro study had cancer exome gene sequence
 - >300 "nonsynonymous mutations" (meaning alter protein sequence) associated with:
 - Improved ORR, durable clinical benefit, and PFS
 - "Molecular smoking signature" (C-to A transversions)
 - Higher neo-antigen burden
 - DNA repair enzyme pathway mutations ("hypermutated tumors")
 - Concluded: genomic landscape (mutational burden "mutanome") enables response to PD-1 therapy

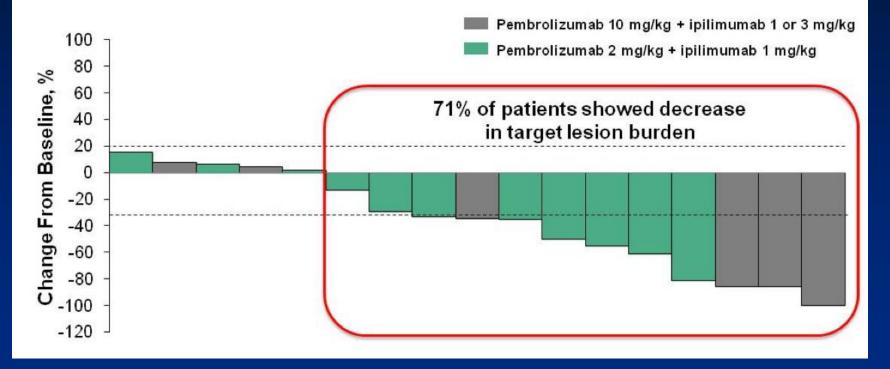
PD-L1 as a Predictive Immune Biomarker: Assays, Sample Collection, and Analyses in NSCLC Studies


	Pembrolizumab Merck	Nivolumab Bristol-Myers Squibb	MPDL3280A Roche/Genentech	MEDI4736 AstraZeneca
PD-L1 Assay	 Prototype or clinical trial IHC assay (22C3 Ab)¹ 	 Dako automated IHC assay (28-8 Ab)^{3,4} 	Ventana automated IHC assay	 1st generation or Ventana automated IHC (BenchMark ULTRA) assay (Ventana PD-L1 (SP263) clone)^{7,8}
Sample Source	 Surface expression of PD-L1 on tumor specimen* 	 Surface expression of PD-L1 on tumor cells* 	 Surface expression of PD-L1 on TILs⁵ 	 Surface expression of PD- L1 on TILs
and Collection	 Ph I: Fresh tissue Ph II/III: Archival or fresh tissue² 	 Archival⁴ or fresh tissue 	Archival or fresh tissue	PhI: Fresh tissue
Definition of Positivity†	 IHC Staining: Strong vs weak expression² PD-L1 expression required for NSCLC for enrollment² Note that one arm of KEYNOTE 001 trial requires PD-L1⁻ tumors¹ Tumor PD-L1 expression:¹ ≥50% PD-L1⁺ cut-off: 32% (41/129) 1-49% PD-L1⁺ cut-off: 36% (46/129) 	 IHC Staining: Strong vs weak expression^{3,4} Patients not restricted in PD-L1 status in 2nd- & 3rd-line⁴ Ph III 1st-line trial in PD-L1+³ Tumor PD-L1 expression:⁴ 5% PD-L1⁺ cut-off: 49% (33/68)⁴ 	 IHC Staining intensity (0, 1, 2, 3): IHC 3 (≥10% PD-L1⁺): Ph III trial⁵ IHC 2,3 (≥5% PD-L1⁺)⁵ IHC 1,2,3 (≥1% PD-L1⁺)⁵ IHC 1, 0, or unknown PD-L1 expression required for NSCLC for enrollment TIL PD-L1 expression: ^{5,6} IHC 3 (≥10% PD-L1⁺): 11% (6/53) PD-L1 low (IHC 1, 0): 75% (40/53) 	 IHC Staining intensity: Not presented to date^{7,8,9} TIL PD-L1 expression: Not presented to date^{7,8,9}

Combination Checkpoints

Immune Modulatory Receptors

Turning Up the Activating


Blocking the Inhibiting

Reprinted by permission from Macmillan Publishers Ltd: NATURE Mellman et al. Nature. 2011;480: 480-489. Copyright (2011).

Keynote-021 Cohort D: Phase I Pembrolizumab + Ipilimumab as 2nd-line NSCLC

Change From Baseline in Tumor Size (RECIST v1.1, Investigator Review)

Patnaik A et al. Presented at: American Society of Clinical Oncology, 2015 Annual Meeting; (Abstract 8011).

Case Presentation 3

- A 61-year-old male presented with left lateral chest pain
- Work-up revealed a left upper-lobe lung mass measuring 2.5 lung mass and an erosive lesion in the left 5th rib
- Enlarged left hilar lymph node
- PET scan was positive at the left lung mass, hilum, left 5th rib, T9 and T12 spine

Case Presentation 3: Work-up

- Biopsy of the rib lesion was positive for squamous cell lung carcinoma
- Medical history included hypertension and hyperlipidemia
- Former smoker with a 40 pack years smoking history
- ECOG PS = 1

Case Presentation 3 (cont.)

Polling Question

The patient receives palliative radiotherapy for the rib lesion. What systemic therapy would you recommend?

- 1. Platinum-based doublet chemotherapy
- 2. Single agent cytotoxic chemotherapy
- 3. Immunotherapy, such as anti-PD-1 therapy
- 4. Targeted EGFR TKI therapy

First-line Immunotherapy for NSCLC

Pembrolizumab as 1st-line therapy for NSCLC

1:1

n = 101 **Key Eligibility Criteria** R А Metastatic NSCLC Ν Treatment-naïve D 0 PD-L1+ve Μ ECOG PS 0 or 1 Ζ Adequate organ function Endpoints Primary: AE, DLTs, RR Secondary: pharmacokinetics, pharmacodynamics, PFS, OS, DOR

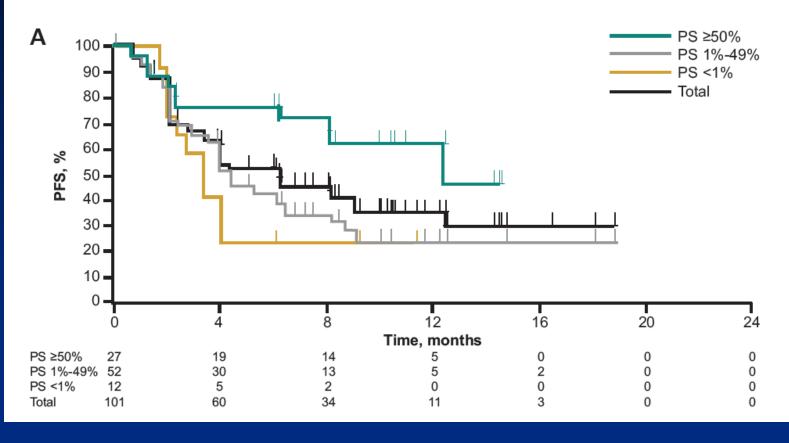
Pembrolizumab 10 mg/kg Q2W until PD or unacceptable toxicity

Pembrolizumab 10 mg/kg Q3W* until PD or unacceptable toxicity

*11 patients randomized to 2 or 10 mg/kg Q3W

- PD-L1 expression was assessed by IHC (22C3 antibody)
- Response assessed every 9 week by RECIST 1.1

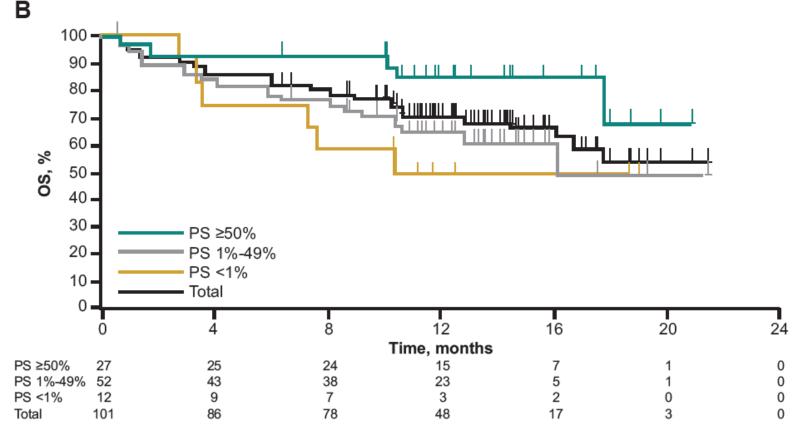
Rizvi NA et al. Presented at: American Society of Clinical Oncology, 2015 Annual Meeting; (Abstract 8026).


KEYNOTE-001: Efficacy

		PD-L1 Staining			
	All treated (n = 101)	≥50% (n = 27)	1%-49% (n = 52)	<1% (n = 12)	
ORR, % (95% CI)	27 (18-37)	51.9 (32-71)	17.3 (8-30)	8.3 (0.2-39)	
DCR, %	NA	77.8	63.5	66.7	
PFS median, months (95% CI) 6-month rate, %	6.1 (4.1-9.1) NA	12.5 (8.0-NR) 77.0	4.2 (3.1-6.4) 44.4	3.5 (2.1-NR) 25.0	
OS median, months (95% CI) 6-month rate, %	NR (16.2-NR) NA	NR (17.8-NR) 92.6	16.2 (10.7 – NR) 80.4	10.4 (3.4-NR) 75.0	

- ORRs were similar across dosage groups
- Among patients with squamous histology, ORRs were 100%, 23%, and 0% for those with ≥50% (n = 1), 1%-49% (n = 13), and <1% (n = 5) PD-L1 staining, respectively
- Among patients with non-squamous histology, ORRs were 52%, 16%, and 14% for those with ≥50% (n = 25), 1%-49% (n = 37), and <1% (n = 7) PD-L1 staining, respectively

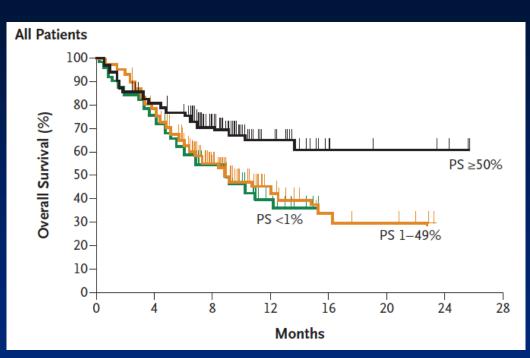
KEYNOTE-001: PFS By Biomarker Status


Figure 5. Kaplan-Meier estimates of PFS (A) and OS (B) in the total population and by PD-L1 expression level.

Rizvi NA et al. Presented at: American Society of Clinical Oncology, 2015 Annual Meeting; (Abstract 8026).

KEYNOTE-001: Survival by Biomarker Status

Figure 5. Kaplan-Meier estimates of PFS (A) and OS (B) in the total population and by PD-L1 expression level.

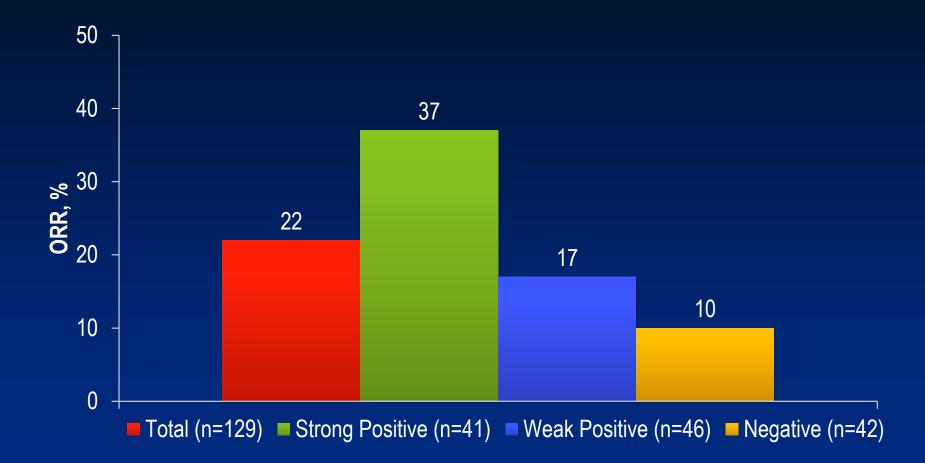


Rizvi NA et al. Presented at: American Society of Clinical Oncology, 2015 Annual Meeting; (Abstract 8026).

KEYNOTE-001: Pembrolizumab for Treatment of NSCLC

- 495 patients, phase IB study
 - Allowed front-line and prior chemo-treated patients
 - Randomized 2 mg/kg Q3w vs 10 mg/kg Q3w
 - Recent Bx required, training vs validation group: PD-L1+ >50% expression
- Results: ORR 19.4% (of which 84% durable)
 - Similar efficacy 2 mg/kg vs 10 mg/kg
 - If PD-L1 +, ORR 45.2%
 - If smoker, ORR 22.5% vs 10.3% never smoker
- Toxicity: fatigue, pruritis, decreased appetite
 - No clear difference between 2 mg/kg vs 10 mg/kg
 - 9% grade 3-5 treatment AEs, 1 patient pneumonitis death

KEYNOTE-001: Pembrolizumab for Treatment of NSCLC Table 1. Adverse Events in 495 Patients in the Treated Population.*



PS = proportion score % positivityof PD-L1 membrane staining on tumor

Garon EB et al. N Engl J Med. 2015;372:2018-2028.

Adverse Event	Any Grade	Grade 3–5
	no. of pa	tients (%)
Fatigue	96 (19.4)	4 (0.8)
Pruritus	53 (10.7)	0
Decreased appetite	52 (10.5)	5 (1.0)
Rash	48 (9.7)	1 (0.2)
Arthralgia	45 (9.1)	2 (0.4)
Diarrhea	40 (8.1)	3 (0.6)
Nausea	37 (7.5)	4 (0.8)
Hypothyroidism	34 (6.9)	1 (0.2)
Asthenia	24 (4.8)	5 (1.0)
Anemia	21 (4.2)	0
Dyspnea	21 (4.2)	19 (3.8)
Pyrexia	21 (4.2)	3 (0.6)
Decreased weight	19 (3.8)	2 (0.4)
Dry skin	18 (3.6)	0
Pneumonitis†	18 (3.6)	9 (1.8)
Elevation in aspartate aminotransferase	15 (3.0)	3 (0.6)
Vomiting	14 (2.8)	3 (0.6)
Dermatitis acneiform	13 (2.6)	0
Myalgia	13 (2.6)	0
Cough	12 (2.4)	0
Elevation in alanine aminotransferase	11 (2.2)	2 (0.4)
Chills	10 (2.0)	0
Constipation	10 (2.0)	2 (0.4)
Infusion-related reaction	15 (3.0)	1 (0.2)

Pembrolizumab: Response Rate by Level of PD-L1 Expression

Garon EB et al. N Engl J Med. 2015;372:2018-2028.

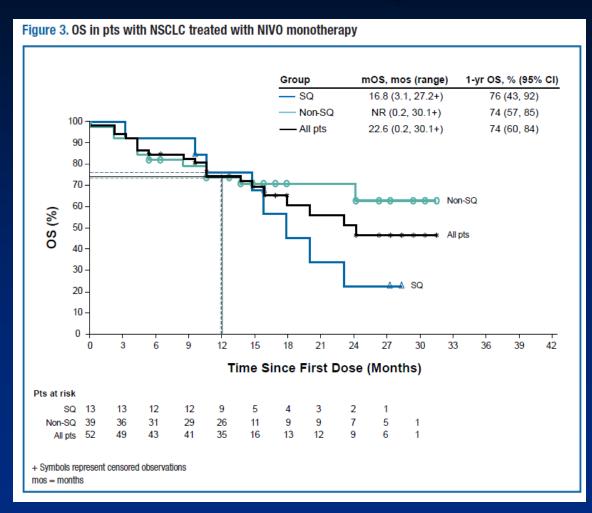
Nivolumab in Advanced NSCLC: Front-line Therapy

Key Eligibility Criteria

- Stage IIIB/IV NSCLC
- ECOG PS 0 or 1
- Chemo-naïve except Arms D, K, L
- Life expectancy \geq 3 mo

Arm F: Nivolumab monotherapy (any) (n = 52)

Arm K: Nivolumab monotherapy (squamous)


Arm L: Nivolumab monotherapy (nonsquamous)

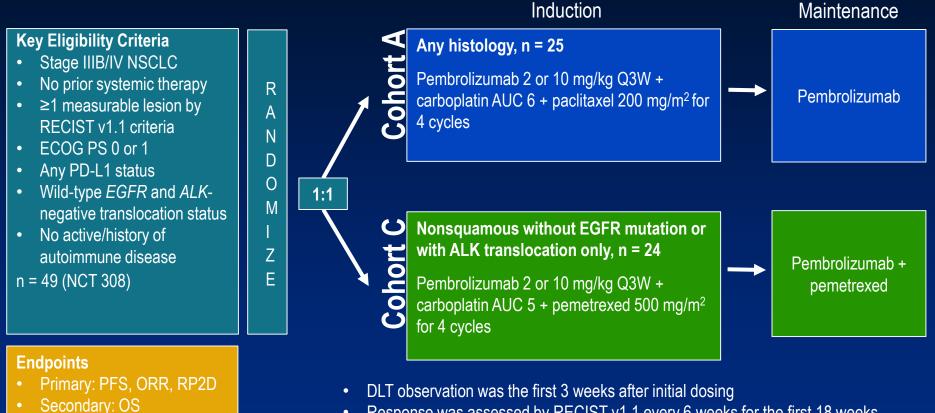
- Nivolumab was dosed at 3 mg/kg IV Q2W until progression or unacceptable toxicity (postprogression treatment was permitted per protocol)
- There are multiple arms in this trial with nivolumab combinations
- Only results for Arm F are reported
- Prior radiotherapy must have been completed at least 2 wk prior to study entry
- Response (RECIST v1.1) was evaluated overall by histology and by tumor PDL1 expression (PDL1+: ≥1% tumor cells expressing PDL1)

Endpoints

- Primary: safety, tolerability
- Secondary: ORR, 24week PFS
- Exploratory: OS

Nivolumab in Advanced NSCLC Correlation of Outcomes with PD-L1 Expression

Gettinger SN et al. J Clin Oncol. 2014;32:5s (suppl; abstr 8024).


Polling Question

A patient with NSCLC is interested in receiving an immune checkpoint inhibitor as first-line therapy. Which of the following would you advise?

- 1. Monotherapy with an immune checkpoint inhibitor
- 2. Combination with chemotherapy
- 3. Immune checkpoint inhibitor for 4 cycles followed immediately by chemotherapy
- 4. Chemotherapy for 4 cycles followed immediately by immune checkpoint inhibitor
- 5. Currently available data are limited regarding the role of immune checkpoint inhibitor as first-line therapy outside of clinical trials

Chemotherapy + PD-1/PDL-1 Inhibition

Phase I/II KEYNOTE-021: Pembrolizumab + Chemotherapy

- Response was assessed by RECIST v1.1 every 6 weeks for the first 18 weeks, every 9 weeks for year 1, and every 12 weeks until year 2 by investigator assessment and central review
- As of March 31, 2015, 49 patients were treated

Papadimitrakopoulou V et al. Presented at: American Society of Clinical Oncology, 2015 Annual Meeting; (Abstract 8031).

KEYNOTE-021: Efficacy

Best Overall Response Rate per RECIST v1.1 by Investigator Review

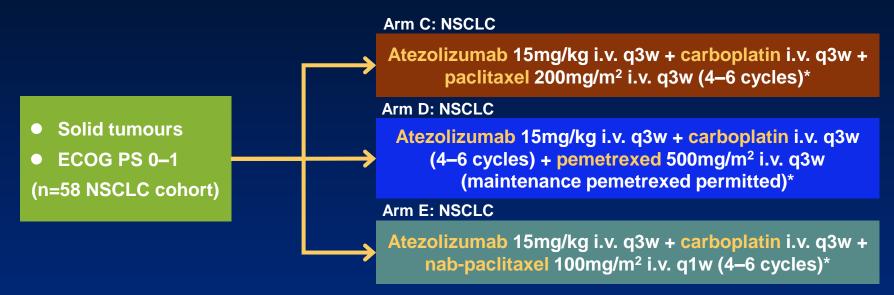
	Cohort A			Cohort C		
	Pembro 10 mg/kg Q3W + paclitaxel + carboplatin (n = 12)	Pembro 2 mg/kg Q3W + paclitaxel + carboplatin (n = 13)	Cohort A Total n = 25	Pembro 10 mg/kg Q3W + pemetrexed + carboplatin (n = 12)	Pembro 2 mg/kg Q3W + pemetrexed + carboplatin (n = 12)	Cohort C Total n = 24
ORR, n (%) [95% CI]	2 (17) [2-48]	5 (38) [14-68]	7 (28) [12-49]	9 (75) [43-74]	5 (42) [15-72]	14 (58) [37-78]
DCR, n (%) [95% CI]	9 (75) [6-57]	12 (92) [64-100]	21 (84) [64-96]	12 (100) [74-100]	12 (100) [74-100]	24 (100) [86-100]
Best overall res	ponse, n (%)					
CR	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)
PR	2 (17)	5 (38)	7 (28)	9 (75)	5 (42)	14 (58)
SD	7 (58)	7 (54)	14 (56)	3 (25)	7 (58)	10 (42)
PD	3 (25)	1 (8)	4 (16)	0 (0)	0 (0)	0 (0)

 21/25 patients in Cohort A (88%) and all 24 patients in Cohort C (100%) experienced a decrease from baseline in size of their target lesion

• At the time of analysis, 7/7 responders in Cohort A, and 8/14 responders in Cohort C remained in response

• 16/25 patients in Cohort A and 16/24 patients in Cohort C remained on treatment

Papadimitrakopoulou V et al. Presented at: American Society of Clinical Oncology, 2015 Annual Meeting; (Abstract 8031).


KEYNOTE-021: Safety

Grade 3-4 Treatment-Related Adverse Events

Adverse Event	Coho	ort A	Cohort C		
Adverse Event, n (%)	Pembro 10 mg/kg Q3W + paclitaxel + carboplatin (n = 12)	Pembro 2 mg/kg Q3W + paclitaxel + carboplatin (n = 13)	Pembro 10 mg/kg Q3W + pemetrexed + carboplatin (n = 12)	Pembro 2 mg/kg Q3W + pemetrexed + carboplatin (n = 12)	
Any	3 (25)	5 (38)	5 (42)	4 (33)	
ALT increased	0 (0)	0 (0)	1 (8)	1 (8)	
Anemia	1 (8)	1 (8)	0 (0)	1 (8)	
AST increased	0 (0)	0 (0)	1 (8)	2 (17)	
Atrial fibrillation	0 (0)	0 (0)	0 (0)	1 (8)	
Colitis	0 (0)	0 (0)	0 (0)	1 (8)	
Diarrhea	0 (0)	0 (0)	1 (8)	0 (0)	
Drug eruption	0 (0)	0 (0)	1 (8)	0 (0)	
Fatigue	1 (8)	0 (0)	0 (0)	0 (0)	
Febrile neutropenia	0 (0)	2 (15)	0 (0)	0 (0)	
Hypertension	1 (8)	0 (0)	0 (0)	0 (0)	
Hyponatremia	0 (0)	0 (0)	1 (8)	0 (0)	
Infectious pleural effusion	0 (0)	1 (8)	0 (0)	0 (0)	
Leukopenia	0 (0)	1 (8)	0 (0)	0 (0)	
Neutropenia	0 (0)	1 (8)	0 (0)	0 (0)	
Rash	1 (8)	0 (0)	0 (0)	0 (0)	
Urticaria	0 (0)	1 (8)	0 (0)	0 (0)	
WBC count decreased	0 (0)	1 (8)	0 (0)	0 (0)	

Papadimitrakopoulou V et al. Presented at: American Society of Clinical Oncology, 2015 Annual Meeting; (Abstract 8031).

Atezolizumab (MPDL3280A) combined with platinum-based chemotherapy in NSCLC: Phase Ib GP28328 study design and endpoints

*supportive care (including steroids if necessary) was permitted, at the investigators' discretion; atezolizumab was given until loss of clinical benefit

- Primary endpoint: safety (including dose-limiting toxicities)
- Secondary endpoints: pharmacokinetics; best overall response; objective response rate (ORR); duration of response (DOR); progression-free survival (PFS)
- Date of cut-off: 10 Feb 2015; Median safety follow-up: 128.5 days (4.2 months)

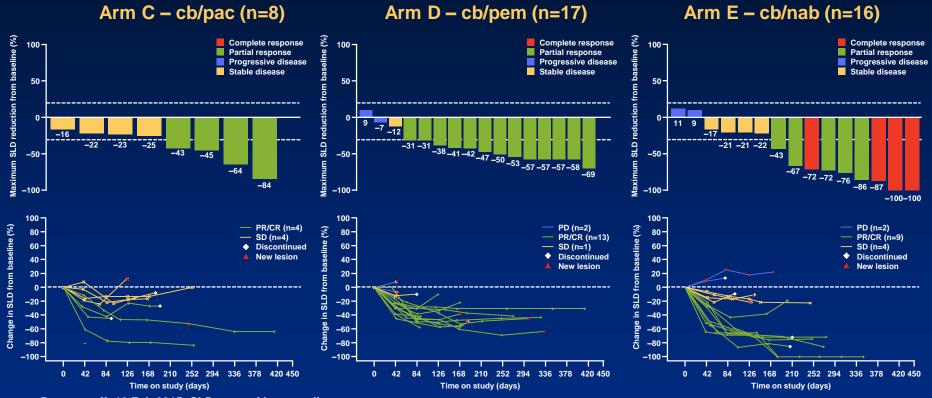
Camidge DR et al. Presented at 2015 WCLC.

Grade 3/4 Treatment-Related AEs* in ≥3% of patients

AE, n (%)	Arm C – cb/pac (n=14)	Arm D – cb/pem (n=24)	Arm E – cb/nab (n=20)	All NSCLC patients (n=58)
Neutropenia	4 (28.6)	8 (33.3)	7 (35.0)	19 (32.8)
Anemia	2 (14.3)	2 (8.3)	4 (20.0)	8 (13.8)
Fatigue	1 (7.1)	2 (8.3)	2 (10.0)	5 (8.6)
Neutrophil count decreased	1 (7.1)	1 (4.2)	2 (10.0)	4 (6.9)
Platelet count decreased	0 (0)	3 (12.5)	1 (5.0)	4 (6.9)
Alanine aminotransferase increased	0 (0)	1 (4.2)	2 (10.0)	3 (5.2)
Aspartate aminotransferase increased	0 (0)	1 (4.2)	2 (10.0)	3 (5.2)
Dehydration	1 (7.1)	2 (8.3)	0 (0)	3 (5.2)
Thrombocytopenia	0 (0)	2 (8.3)	1 (5.0)	3 (5.2)
Hypokalemia	0 (0)	1 (4.2)	1 (5.0)	2 (3.4)
Leukopenia	0 (0)	2 (8.3)	0 (0)	2 (3.4)
Nausea	0 (0)	0(0)	2 (10.0)	2 (3.4)

• One patient in Arm D had a grade 5 event possibly related to treatment (systemic candida)

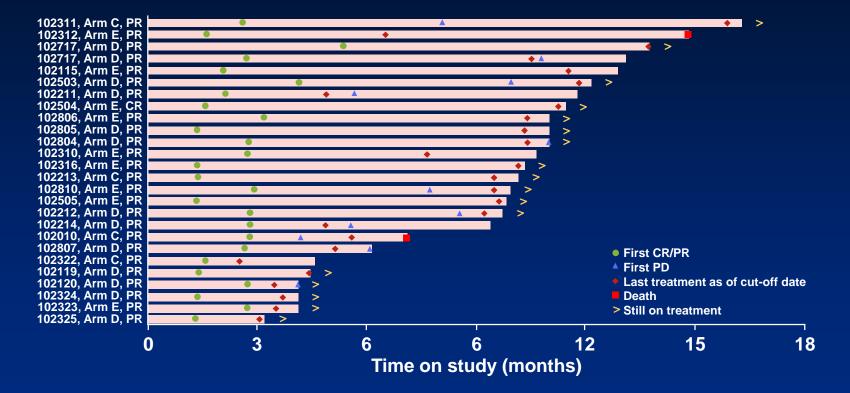
*includes AEs attributed to chemotherapy and/or atezolizumab; data cut-off: 10 Feb 2015


Camidge DR et al. Presented at 2015 WCLC.

Summary of Response by RECIST v1.1 (Response-Evaluable Patients)

	Arm C – cb/pac (n=8)	Arm D – cb/pem (n=17)	Arm E – cb/nab (n=16)	All NSCLC patients (n=41)	
Overall response, n (ORR %)	4 (50.0)	13 (76.5)	9 (56.3)	26 (63.4)	
[95% CI for ORR]	[15.7–84.3]	[50.1–93.2]	[29.9–80.3]	[46.9–77.9]	
Complete response, n (%)	0 (0)	0 (0)	4 (25.0)	4 (9.8)	
Partial response, n (%)	4 (50.0)	13 (76.5)	5 (31.3)	22 (53.7)	
Stable disease, n (%)	4 (50.0)	1 (5.9)	4 (25.0)	9 (22.0)	
Progressive disease, n (%)	0 (0)	2 (11.8)	2 (12.5)	4 (9.8)	
Missing or unevaluable, n (%)	-	1 (5.9)	1 (6.3)	2 (4.9)	

• Data are preliminary; ~25 patients will be included in each arm for final analysis *censored; data cut-off: 10 Feb 2015


Extent of Response and Changes in Tumor Burden by Treatment Arm

Data cut-off: 10 Feb 2015; SLD, sum of longest diameters

Camidge DR et al. Presented at 2015 WCLC.

Duration of Individual Patient Responses* at Time of Interim Analysis

Data cut-off: 10 Feb 2015; *investigator-assessed, unconfirmed responses

Camidge DR et al. Presented at 2015 WCLC.

Case Presentation 3 (cont.)

- The patient enrolled in a clinical trial and received pembrolizumab as first-line therapy.
- He achieved near complete resolution of the left lung mass and had no new lesions (PR)
- 6 months later, the patient developed dyspnea and was hospitalized for pneumonia
- Diagnosis of drug-induced pneumonitis was made and pembrolizumab was discontinued
- Patient was followed on close surveillance after recovery from pneumonia
- 14 months later (from diagnosis of NSCLC), he developed disease progression and is on combination chemotherapy

First-line PD-1 Blockade in NSCLC

Ipilimumab + Nivolumab 1st Line Lung

- Phase IB, front-line lung cancer, n = 49
 - ORR 19% (PD-L1+), 14% (PD-L1-)
 - PFS 24 weeks 47% (PD-L1+), 29% (PD-L1-)
 - Drug related grade 3%-4% AEs = 49%

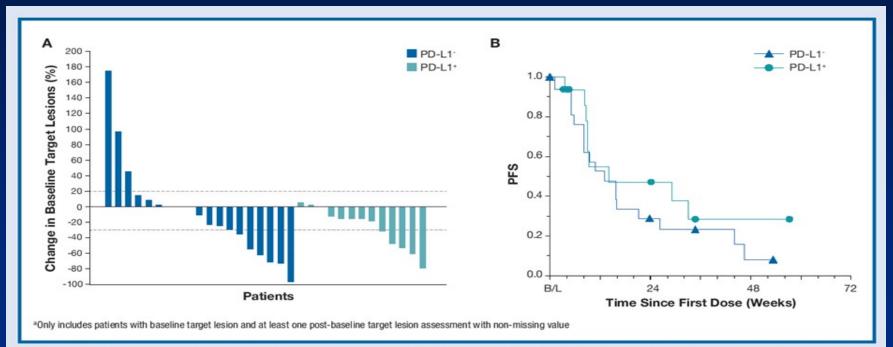
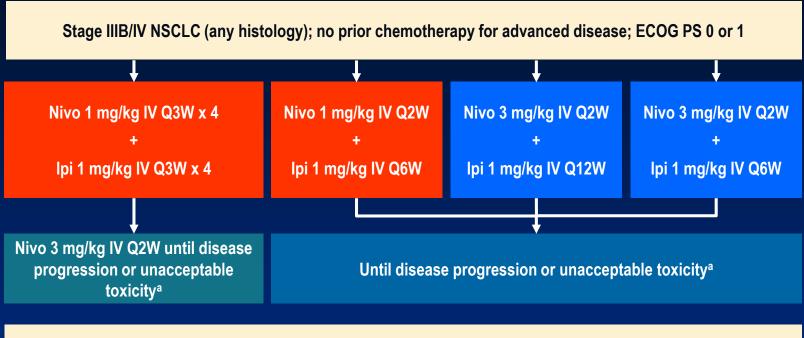



Figure 7. Response by PD-L1 status in NSCLC patients treated with nivolumab plus ipilimumab: A) best percent change in target lesion tumor burden from baseline^a and B) PFS

Antonia SJ et al. J Clin Oncol. 2014;32:5s (suppl; abstr 8023).

CheckMate 012 Study Design: Nivolumab Plus Ipilimumab in Firstline NSCLC

Primary endpoint: safety and tolerability Secondary endpoints: ORR (RECIST v 1.1) and PFS rate at 24 wks Exploratory endpoints: OS; efficacy by PD-L1 expression

^aPatients tolerating study treatment permitted to continue treatment beyond RECIST v1.1-defined progression if considered to be deriving clinical benefit

Rizvi et al, WCLC 2015

Summary of Efficacy

	Nivo 1 + lpi 1 Q3W (n = 31)	Nivo 1 Q2W + Ipi 1 Q6W (n = 40)	Nivo 3 Q2W + Ipi 1 Q12W (n = 38)	Nivo 3 Q2W + Ipi 1 Q6W (n = 39)	Nivo 3 Q2Wª (n = 52)
Confirmed ORR, % (95% CI)	13 (4, 30)	25 (13, 41)	39 (24, 57)	31 (17, 48)	23 (13, 37)
Confirmed DCR, % (95% CI)	55 (36, 73)	58 (41, 73)	74 (57, 87)	51 (35, 68)	50 (36, 64)
Best overall response, %					
Complete response Partial response Unconfirmed partial response	0 13 3	0 25 3	0 39 5	0 31 8	8 15 0
Stable disease Progressive disease Unable to determine	42 35 6	33 30 10	34 13 8	21 26 15	27 38 12
PFS rate at 24 wks, % (95% CI)	55 (36, 71)	NC	63 (44, 76)	NC	41 (27, 54)
Median PFS, mos (95% CI)	10.6 (2.1, 16.3)	4.9 (2.8,)	8.0 (4.2,)	8.3 (2.6,)	3.6 (2.3, 6.6)
Median OS, mos (95% CI)	NR (11.5,)	NR (8.9,)	NR	NR (8.7,)	22.6 (14.9,)
Median length of follow-up, mos (range)	16.6 (1.8–24.5)	6.2 (0.4–13.1)	8.4 (0.9–12.3)	7.7 (1.1–12.2)	14.3 (0.2–30.1)

- Median DOR was not reached in any arm
- Unconventional immune-related responses were observed in arms Nivo 3 Q2W + Ipi 1 Q12W (n = 2), Nivo 3 Q2W + Ipi 1 Q6W (n = 1) and Nivo 3 Q2W (n = 3)

NR: the time point at which the percent of survivors drops below 50% has not been reached due to insufficient number of events and/or follow up. aResults for Nivo 3 Q2W are reported based on a March 2015 DBL

Rizvi et al, WCLC 2015

Efficacy by Tumor PD-L1 Expression

	≥1% PD-L1 expression				<1% PD-L1 expression			
	Nivo 1 + lpi 1 Q3W (n = 12)	Nivo 1 Q2W + Ipi 1 Q6W (n = 21)	Nivo 3 Q2W + lpi 1 Q12W (n = 21)	Nivo 3 Q2W + Ipi 1 Q6W (n = 23)	Nivo 1 + Ipi 1 Q3W (n = 13)	Nivo 1 Q2W + Ipi 1 Q6W (n = 7)	Nivo 3 Q2W + lpi 1 Q12W (n = 9)	Nivo 3 Q2W + Ipi 1 Q6W (n = 7)
ORR, %	8	24	48	48	15	14	22	0
mPFS, wks (95% CI)	11.5 (7.1,)	21.1 (11.4,)	34.6 (15.9, 35.3)	NR (15.4,)	34.0 (8.9,)	NR (10.1,)	23.1 (4.0,)	10.3 (7.4, 12.7)
PFS rate at 24 wks, % (95% Cl)	42 (15, 67)	40 (18, 61)	74 (48, 88)	65 (42, 81)	57 (25, 80)	NC	39 (9, 69)	0

• PD-L1 expression was measured using the Dako/BMS automated IHC assay^{1,16}

- Fully validated with analytical performance having met all predetermined acceptance criteria for sensitivity, specificity, precision, and robustness
- All patients had available pretreatment tumor samples; 76% (113/148) had samples evaluable for PD-L1 expression
- Median DOR was not reached in any arm, regardless of PD-L1 expression

NR: the time point at which the percent of survivors drops below 50% has not been reached due to insufficient number of events and/or follow up

Rizvi et al, WCLC 2015

KEYNOTE 42 Trial

Primary endpoint: Overall Survival

NCT02220894

CheckMate 026 Trial

Primary endpoint: PFS

NCT02041533

Conclusions

- Immune checkpoint inhibitors are active as monotherapy in 1st-line treatment of advanced NSCLC
- Combination of PD-1/PDL-1 inhibitors with platinum-based chemotherapy appears safe, based on early experience

Thank you for joining us today!

Please remember to complete the **posttest and evaluation.**

Your participation will help shape future CME activities.