

Improving Outcomes in Geriatric Anemia A Guide to the Differential Diagnosis of Treatable Causes

David P. Steensma, MD, FACP Senior Physician, Dana-Farber Cancer Inst Associate Professor of Medicine Harvard Medicial School Boston, MA

. stitute

Brian Koffman, MDCM Medical Director, CLL Society Inc., Partner, St. Jude Haritage Medical Group Diamond Bar, CA Clinical Professor (Retired) Department of Family Medicine Keck School of Medicine, USC Family Practice Los Angeles, CA

Improving Outcomes in Geriatric Anemia A Guide to the Differential Diagnosis of Treatable Causes

> Brian Koffman, MDCM Medical Director, CLL Society Inc. Partner, St. Jude Heritage Medical Group Diamond Bar, CA Clinical Professor (Retired) Department of Family Medicine Keck School of Medicine, USC Family Practice Los Angeles, CA

Anemia Best Practices

- Anemia should not be considered a normal part of the aging process and should be evaluated further
- A cause can often be determined, and treatment may alter outcomes and improve quality of life (QOL)
- Use mean cell volume (MCV) to narrow differential diagnosis of geriatric anemia and determine initial tests
 - Microcytosis, MCV <80 fL
 - Normocytosis, MCV 80-100 fL
- Macrocytosis, MCV >100 fL
- Referral to hematologist for possible bone marrow examination should be carefully considered in patients with unexplained macrocyctic anemia

Lower Limits of Normal Hemoglobin (g/dL) in Adults					
Population	WHO (1968)	NHANES III (1994)* (20-59 years)	NHANES III (1994)* (>60 years)	Scripps-Kaiser (2006)*	Mayo Clinic CC (2007)
White men	13	13.8	12.8	13.7	13.5
Black men	NRS	12.8	11.8	12.9	NRS
White women	12 (11 if pregnant)	12.2	12.0	12.2	12.0
Black women	NRS	11.3	11.3	11.5	NRS

Ethnic background, altitude of r

Ethnic background, autube of residence, smoking st WHO. World Health Organ Tech Rep Ser. 1968;405:5-37 Guralnik JM, et al. Blood. 2004;104:2263-2268. Beutler E, et al. Blood. 2006;107:1747-1750. Steensma DP, et al. Mayo Clin Proc. 2007;82:958-966.

Key Takeaway

The cause of anemia in the elderly, even if mild, should be evaluated for treatment to improve quality and quantity of life

Anemia Development is Predictive of Mortality in Older Persons

- During long-term follow-up (≤16 years) of the Cardiovascular Health Study (n=3,758), anemia development* (HR 1.39, 95% CI 1.15, 1.69) and hemoglobin decline (HR 1.11, 95% CI 1.04, 1.18 per 1 g/dL decrease) over 3 years predicted subsequent mortality in men and women
- Baseline increasing age, being African-American, and kidney disease predicted anemia development over 3 years
- Numerous other studies show similar results
- At-risk elderly individuals can be identified for early intervention to improve quality and quantity of life

"WHO criteria; Mean age=72.1 years Zakai NA, et al. Am J Hematol. 2013;88:5-9

Associations with a Low Hemoglobin Level in Older Persons Decreased Increased Mobility, bone density, skeletal muscle mass Rates of recurrent falls Rates of major depression Cognitive function • Frailty index Outcomes in specific diseases (anemia as marker of disease severity correlation ≠ causation) Risk of hospitalization and longer duration in hospital Congestive heart failure (poor hemodynamics, more symptor higher mortality) Cancer (decreased survival) HIV infection, independent of viral load

Steensma DP, et al. Mayo Clin Proc. 2007;82:958-966

62-year-old Business Owner CONTINUED

- Iron studies
 - Serum ferritin: 58 ng/mL (normal range: 20-300 ng/mL)
 - Serum iron: 100 mcg/dL (normal range: 60-170 mcg/dL)
 - TIBC: 210 mcg/dL (normal range: 240-450 mcg/dL)
 - Transferrin saturation: 48% (normal range: 20%-50%)

59-year-old Fitness Instructor

- Diagnosed with Crohn's disease at age 27
 Symptoms have generally been mild to moderate and have responded to treatment with sulfasalazine, antibiotics, and budesonide in conjunction with nutritional therapy
- She now presents complaining of fatigue
- No bruising, bleeding, numbness, tingling or ataxia
- Other medications: NSAIDs for knee pain
- Surveillance colonoscopy performed 2 years ago was negative
- Physical examination:
 - Moderate pallor, some abdominal discomfort; otherwise unremarkable

Key Takeaway

Ferritin level is **NOT** a reliable measure of iron storage in the body, because it is a positive acute-phase reactant

Hb increase of 21 treatment and conf Reticulocytes shou Ferrous (2+ valenc Vitamin C and an a	g/dL after one mon firms the diagnosis Id increase after 1 week e) salts are preferred acidic stomach increase iron	th of treatment defi	nes an adequate response to nore readily absorbed than ferric (3+)
Form	Formulation	Elemental Iron	Typical Dosage
Ferrous fumarate	324-mg tablet	106 mg	One tablet twice per day
Ferrous gluconate	300-mg tablet	38 mg	1-3 tablets 2 or 3 times per day
Ferrous sulfate	325-mg tablet	65 mg	One tablet 3 times per day
Adherence can be and constipation) These effects may "Eating more red	a challenge due to G be reduced when iron is ta meat" is never enou	I adverse events (ep ken with meals, but absorp ugh! (100 g ribeye s tors may reduce abs	igastric discomfort, nausea, diarrhea tion may decrease by 40% teak = 1.94 mg iron = 254 kcal) opning of distary iron and iron tablet

Intravenous Iron Therapy

- Considered better tolerated and more effective than oral iron treatment in improving ferritin
- Can be used in patients who cannot tolerate/absorb oral iron, eg, those who have undergone gastrectomy, gastrojejunostomy, bariatric surgery, or other small bowel surgeries
- HMW iron dextran should be avoided (and is no longer marketed)
- Available as solutions for injection; dose based on weight and desired change in Hb
 Iron deficient patients usually need 1000 1500 mg to replete

	Elemental Iron	Typical single dose
LMW iron dextran (e.g. InFed®) – can give as total dose infusion	50 mg/mL	Up to TDI
Sodium ferric gluconate (Nulecit™)	12.5 mg/mL	62.5 or 125 mg
Iron sucrose (Venofer*)	20 mg/mL	100 mg
Ferumoxytol (Feraheme®)	30 mg/mL	510 mg
Ferric carboxymaltose (Injectafer®)	50 mg/mL	750 mg

LMW, low molecular weight; HMW, high molecular weight. Short MW, et al. Am Fam Physician. 2013;87:98-104; Rodgers GM, et al. J Am Soc Nephrol. 2008;19:833-840

Cause	Clinical/lab clues	Next test
Iron deficiency	Low ferritin Low iron with high TIBC = low TfSat High STR High RDW High platelets Low hepcidin*	 GI evaluation, unless bleeding source obvious Consider celiac disease (antigliadin Ab)
Anemia of chronic disease/inflammation	Normal or high ferritin Low iron/low TIBC Low sTfR RDW variable High bencidin*	 ESR, CRP to confirm inflammatio Specific immunological evaluatio Serum EPO level

Cause	Clinical/lab clues	Next test
Sideroblastic anemias	 High RDW/dimorphic picture 	 Bone marrow exam
Vitamin C deficiency	 Petechiae, loose teeth; patient is typically alcoholic or malnourished 	 Vitamin C level
Hemoglobin C	 African, chronic hemolysis 	 Hemoglobin electrophoresis/HPLC
Hemoglobin E	 SE Asian, chronic hemolysis 	 Hemoglobin electrophoresis/HPLC

68-year-old Retired Teacher

- Complains of reduced stamina and new dyspnea upon exertion, no chest pain
- Past medical history: breast cancer 6 years ago, treated with lumpectomy and adjuvant chemotherapy and radiotherapy, follow up exams all negative
- No significant alcohol use or smoking history
- Physical examination: lungs clear, mild sinus tachycardia (heart rate ~102/min.); exam otherwise unrevealing

Key Takeaway

- Once gastrointestinal bleeding, nutritional cause, and renal failure have been ruled out, evaluation of anemia should continue
- A **bone marrow examination may be indicated** even if anemia is the only cytopenia

Many Patients With MDS Become Transfusion Dependent

- Transfusions are needed in 39% (lower risk) to 79% (higher risk) of MDS patients¹
- Transfusion requirements are associated with significantly reduced OS²
- Issues with transfusions³⁻⁴
 - Temporary improvement Risk of infection, reaction

 - · Need for iron chelation after multiple transfusions Impact on blood supply (MDS accounts for ~3% of transfusions)
 - Impact on QoL
 - Inconvenient

 - Costly (blood product processing, drugs/consumables, staff/overhead, management of complications and hospitalization)
- ¹Brechignac S, et al. Blood. 2004;104:263b:Abstract 4716; ²Cazzola M, et al. N Engl J Med. 2005;352:536-538; ²Gupta P, et al. Leuk Ros. 1999;23:953-959; ⁴ Hellström-Lindberg E, et al. Br J Heematol. 2003;120:1037-1046.

Drug	MOA	Indication	Efficacy in pivotal studies	Toxicities	
Lenalidomide ^{1,2}	Immunomodulatory (has effects on MDS cells, the bone marrow microenvironment, and host immunity)	Transfusion-dependent anemia due to low- or int-1-risk MDS associated with a del(Sq) abnormality ± additional cytogenetic abnormalities	67% transfusion independence Median Hb ↑ 5.4 g/dL Median duration of response >2 years 45% complete cytogenetic remission	Cytopenias Peripheral neuropathy Concern about teratogenicit Rash VTE (rare when used as monotherapy as in MDS)	
Azacitidine ^{3,4}	Hypomethylating agent (affects gene expression)	All MDS subtypes	 Significant 9.4 months improvement in OS vs control 45% transfusion independent vs 11% for control 	Cytopenias Febrile neutropenia, especial in first 2 cycles Skin reactions (with subcutaneous azacitidine) Gastrointextinal side effects (diarrhea, nausea) Aphthous ulcers of the mout Maculopapular skin rash	
Decitabine ⁵⁻⁷	Hypomethylating agent (affects gene expression)	All MDS subtypes including previously treated and untreated, de novo and secondary MDS	 32% ORR 51% overall improvement rate including 18% hematologic improvement No OS benefit in EORTC study 		

Anemia Best Practices Anemia should not be considered a normal part of the aging process and should be evaluated A cause can often be determined, and treatment may alter outcomes and improve quality of life (QOL) $% \left(\left(A_{1}^{2}\right) \right) =0$ Use mean cell volume (MCV) to narrow differential diagnosis of geriatric anemia and determine initial tests Microcytosis, MCV <80 fL Normocytosis, MCV 80-100 fL Macrocytosis, MCV >100 fL Referral to hematologist for possible bone marrow examination should be carefully considered in patients with unexplained macrocyctic anemia

Thank you!